Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Neural Network Models for Paraphrase Identifica...
Search
onizuka laboratory
October 23, 2018
Research
1
75
Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
財務諸表監査のための逐次検定
masakat0
0
210
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
900
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
110
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
100
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.4k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
POI: Proof of Identity
katsyoshi
0
120
Remote sensing × Multi-modal meta survey
satai
4
630
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
410
説明可能な機械学習と数理最適化
kelicht
2
700
Featured
See All Featured
Thoughts on Productivity
jonyablonski
73
5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Navigating Team Friction
lara
191
16k
Rails Girls Zürich Keynote
gr2m
95
14k
Making Projects Easy
brettharned
120
6.5k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Context Engineering - Making Every Token Count
addyosmani
9
510
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Transcript
/FVSBM/FUXPSL.PEFMTGPS 1* 454 /-* BOE2" 8VXFJ -BOBOE8FJ9V *O1SPDPG$0-*/( QQ #FTU1BQFS"XBSE
1SFTFOUFECZ5PNPZVLJ,BKJXBSB
4FOUFODF1BJS.PEFMJOH จͱจͷؒͷҙຯతͳؔΛٻΊΔͭͷλεΫ • 1* 1BSBQISBTF*EFOUJGJDBUJPO ݴ͍͑ೝࣝ • 454 4FNBOUJD5FYUVBM4JNJMBSJUZ จͷྨࣅਪఆ
• /-* /BUVSBM-BOHVBHF*OGFSFODF ؚҙؔೝࣝ • 2" 2VFTUJPO"OTXFSJOH ࣭Ԡ 4FOUFODF 4FOUFODF 4FOUFODF1BJS.PEFM -BCFM
.PUJWBUJPOBOE3FTFBSDI2VFTUJPOT • ੲλεΫݻ༗ͷख๏Λ։ൃ͢Δ͔͠ͳ͔ͬͨ • ࠓڞ௨ͷϞσϧͰ1*454/-*2"શ෦ಉ͡Α͏ʹղ͚Δ • ͔͠͠ɺ֤छ405"ख๏dݸͷσʔλͰ͔͠ධՁ͍ͯ͠ͳ͍ Ø ͦͷϞσϧଞͷλεΫσʔληοτͰ༗༻Ͱ͔͢ʁ Ø
γεςϜઃܭύϥϝλ࠷దԽ͕ͲΕ͚ͩੑೳΛվળ͠·͔͢ʁ 4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" *OGFS4FOU 44& %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF 18*.
(FOFSBM'SBNFXPSLGPS4FOUFODF1BJS.PEFMJOH 4FOUFODF&ODPEJOHCBTFE 8PSE*OUFSBDUJPOCBTFE
(FOFSBM'SBNFXPSLGPS4FOUFODF1BJS.PEFMJOH *OQVU&NCFEEJOH-BZFS • ֶशࡁΈͷ୯ޠࢄදݱʢXPSEWFD(MP7FʣΛ͏ͷ͕Ұൠత • 4/4σʔλʹରͯ͠αϒϫʔυ୯Ґͷࢄදݱ͕༗ޮ 4FOUFODF&ODPEJOHCBTFE 8PSE*OUFSBDUJPOCBTFE
(FOFSBM'SBNFXPSLGPS4FOUFODF1BJS.PEFMJOH $POUFYU&ODPEJOH-BZFS • 3W//ͱ͔$//ͱ͔-45.ͱ͔Ͱ୯ޠ͔ΒจͷࢄදݱΛ࡞Δ • 4FOUFODF&ODPEJOHCBTFEϞσϧͷ߹ɺ͜ΕͰऴΘΓ 4FOUFODF&ODPEJOHCBTFE 8PSE*OUFSBDUJPOCBTFE
(FOFSBM'SBNFXPSLGPS4FOUFODF1BJS.PEFMJOH *OUFSBDUJPOBOE"UUFOUJPO-BZFS • ֤࣌ࠁͷӅΕΛநग़ͯ͠ɺ୯ޠΞϥΠϝϯτ෩ͷใΛಘΔ 4FOUFODF&ODPEJOHCBTFE 8PSE*OUFSBDUJPOCBTFE
4FOUFODF&ODPEJOHCBTFE.PEFMT *OGFS4FOU #J-45..BYQPPMJOH/FUXPSL 44& 4IPSUDVU4UBDLFE 4FOUFODF&ODPEFS.PEFM
8PSE*OUFSBDUJPOCBTFE.PEFMT • ͜͜ʹςΩετΛೖྗ 18*. 1BJSXJTF8PSE *OUFSBDUJPO.PEFM %FD"UU %FDPNQPTBCMF"UUFOUJPO.PEFM &4*.
&OIBODFE4FRVFOUJBM*OGFSFODF.PEFM
%BUBTFU 4J[F &YBNQMF -BCFM 4/-* 5SBJO %FW 5FTU
5XPNFOPOCJDZDMFTDPNQFUJOHJOBSBDF .FO BSFSJEJOHCJDZDMFTPOUIFTUSFFU FOUBJMNFOU OFVUSBM DPOUSBEJDU .VMUJ/-* 5SBJO %FW 5FTU 5IF0ME0OF BMXBZTDPNGPSUFE$B`EBBO FYDFQUUPEBZ $B`EBBO LOFXUIF0ME0OFWFSZXFMM FOUBJMNFOU OFVUSBM DPOUSBEJDU 2VPSB 5SBJO %FW 5FTU 8IBU TIPVME*EPUPBWPJETMFFQJOHJODMBTT )PXEP*OPUTMFFQJOBCPSJOHDMBTT QBSBQISBTF OPOQBSBQISBTF 5XJUUFS63- 5SBJO %FW 5FTU -FUUFSXBSOFE8FMMT'BSHPPGlXJEFTQSFBEzGSBVE JO -FUUFST TVHHFTU8FMMT'BSHPTDBOEBMTUBSUFEFBSMJFS QBSBQISBTF OPOQBSBQISBTF 1*5 5SBJO %FW 5FTU &[FLJFM "OTBI XUIF%TIBEFT1PQQFEPVUMFOT &[FLJFM"OTBI XBTXFBSJOHMFOTMFTT%HMBTTFT QBSBQISBTF OPOQBSBQISBTF 454 5SBJO %FW 5FTU 5IFOQFSIBQTXFDPVMEIBWFBWPJEFEBDBUBTUSPQIF 5IFOXFNJHIUIBWFCFFOBCMFUPBWPJEBEJTBTUFS TDPSF < > 8JLJ2" 5SBJO %FW 5FTU )PXNVDIJTUBCMFTQPPO PGXBUFS *O"VTUSBMJBPOFUBCMFTQPPO NFBTVSFNFOUVOJU JT N- USVF GBMTF 5SFD2" 5SBJO %FW 5FTU 8IPXBT-JODPMO`T4FDSFUBSZPG4UBUF 8JMMJBN 4FXBSE USVF GBMTF λεΫछྨͷσʔληοτʢؚҙؔೝࣝɺݴ͍͑ೝࣝɺจͷྨࣅਪఆɺ࣭Ԡʣ
࣮ݧ݁Ռʢ੨ɿ࠷ߴɺɿ࠷ʣ جຊతʹΦϦδφϧͷใࠂΑΓ dϙΠϯτ͍ Ø ݸʑͷσʔληοτ͝ͱʹൣғͳνϡʔχϯά͍ͯ͠ͳ͍ Ø ϥϯμϜγʔυΛዞҙతʹબΜͰ͍ͳ͍ Ø શͯͷϞσϧΛ1Z5PSDIͰ࣮ͨ͠
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" *OGFS4FOU 44& %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF 18*. ˞͋ͱͷϖʔδͰղઆ͢ΔͷͰɺ΅ʔͬͱݟͯ͘ΕͨΒ͍͍Ͱ͢
ଟ͘ͷλεΫͰ 8PSE*OUFSBDUJPOCBTFE.PEFM͕ڧ͍ ୯ޠؒͷؔΛཅʹߟྀͨ͠ํ͕ྑ͍
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" 4FOUFODF&ODPEJOHCBTFE.PEFM 8PSE*OUFSBDUJPO.PEFM
-45.ʹؔ͢Δߟ %FD"UU 8PSE*OUFSBDUJPOCBTFE.PEFMXJUIPVU-45. &4*. %FD"UU XJUI #J 5SFF -45.&ODPEFST
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF
-45.ʹΑΔจ຺ใͷΤϯίʔυ͕ॏཁ %FD"UU 8PSE*OUFSBDUJPOCBTFE.PEFMXJUIPVU-45. &4*. %FD"UU XJUI #J 5SFF -45.&ODPEFST
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF
5SFF-45.ΑΓ #J-45.ͷํ͕ৗʹڧ͍ %FD"UU 8PSE*OUFSBDUJPOCBTFE.PEFMXJUIPVU-45. &4*. %FD"UU XJUI #J 5SFF -45.&ODPEFST
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF
5SFF-45. 5XJUUFSͷσʔλͰߩݙ͢Δʢ63-ɺ1*5ʣ ྫ͑ lFWFSXPOEFSFE zͱ͍͏ϑϨʔζΛແࢹͰ͖ΔΑ͏ʹͳΔ FWFSXPOEFSFE XIZZPVSSFDPSEFEWPJDFTPVOETXFJSEUP ZPV BOEXIZEPPVSSFDPSEFEWPJDFTTPVOETPXFJSEUPVT
4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF Ξϊςʔλ͕࡞ͬͨଞͷσʔλͱҧ͍ɺ ͜ΕΒͷ5XJUUFSσʔλݱ࣮ͷςΩετ
܇࿅࣌ؒʢ4/-*ͷສจରʣ -45.ൈ͖ͷ%FD"UU͕࠷ɺ#J-45.ͷ*OGFS4FOU͕࣍ʹ͍
*OGFS4FOU 44& %FD"UU &4*.@TFR &4*.@USFF &4*.@TFR USFF 18*. <࣌ؒ>
୯ޠҰக͕͍΄Ͳղ͘ͷ͕͍͠
*OGFS4FOU 44& %FD"UU &4*.@TFR 18*. จؒͷ୯ޠҰக d
จ͕͍΄Ͳղ͘ͷ͕͍͠
*OGFS4FOU 44& %FD"UU &4*.@TFR 18*. จ UPLFOT dUPLFOT UPLFOT
ݴ͍͑ೝࣝʹ͓͚ΔసҠֶशʢ2VPSBສจରɺ1*5ສจରʣ
*OGFS4FOU 44& %FD"UU &4*.@TFR 18*. 2VPSBͰ܇࿅ˠ1*5ͰධՁ 1*5Ͱ܇࿅ˠ1*5ͰධՁ *OGFS4FOU 44& %FD"UU &4*.@TFR 18*. QBSBNFUFST . . , . . ύϥϝλ͕ଟ͍ͷͰେྔͷσʔλ͕ඞཁ PSυϝΠϯʹґଘ͠ͳ͍ҰൠతͳϞσϧ
IUUQTHJUIVCDPNMBOXVXFJ41.@UPPMLJU 4/-* ./-* 2VPSB 63- 1*5 454 8JLJ2" 5SFD2" *OGFS4FOU
44& %FD"UU &4*. 18*. 4FOUFODF&ODPEJOHCBTFE 8PSE*OUFSBDUJPOCBTFE