Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Bag-of-Words as Target for Neural Machine...
Search
Yumeto Inaoka
January 22, 2019
Research
0
160
文献紹介: Bag-of-Words as Target for Neural Machine Translation
2019/1/22の文献紹介で発表
Yumeto Inaoka
January 22, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
170
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
120
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
93
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
210
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
270
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
180
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
Other Decks in Research
See All in Research
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
170
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
110
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
180
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
330
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
140
「並列化時代の乱数生成」
abap34
3
820
湯村研究室の紹介2024 / yumulab2024
yumulab
0
260
JMED-LLM: 日本語医療LLM評価データセットの公開
fta98
5
1.2k
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
220
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
680
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
330
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
180
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
What's new in Ruby 2.0
geeforr
343
31k
Speed Design
sergeychernyshev
24
610
The Invisible Side of Design
smashingmag
297
50k
How GitHub (no longer) Works
holman
310
140k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Why Our Code Smells
bkeepers
PRO
334
57k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
700
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Transcript
1 Bag-of-Words as Target for Neural Machine Translation 文献紹介 2019/1/22
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature • Bag-of-Words as Target for Neural Machine Translation •
Shuming Ma, Xu SUN, Yizhong Wang, Junyang Lin • Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 332-338, 2018. 2
Abstract 翻訳において正解はひとつじゃない 既存のNMTではひとつのみを正解として使用 → 他の正解は誤りとして学習される 正解同士は似たBag-of-Words (BoW)
を共有する → BoWによって正解とそれ以外を区別できる 学習セットにない正解を考慮するためにBoWを利用 → 中国語-英語の翻訳において優位性を確認 3
Introduction NMTは首尾一貫の妥当な翻訳の生成ができる 現在のNeural Machine Translation (NMT)の 多くはSequence-to-Sequence モデル(Seq2Seq)に
基づいている 4
Seq2Seq (Overview) 5 私 は 元気だ <BOS> I am fine
<EOS> 入力文 出力文 Encoder Decoder
Seq2Seq (Encoder) 6 私 は 元気だ One-hot vector Embedding layer
Recurrent layer 入力文
Seq2Seq (Decoder) 7 I <BOS> I am fine am fine
<EOS> One-hot vector Embedding layer Recurrent layer One-hot vector Output layer 出力文
Introduction NMTではひとつの正解のみを 学習に用いる 他の正解は誤った翻訳と学習 → 悪影響を与える可能性 8
Introduction 正しい翻訳は似たBoWを共有 → 正しい翻訳と誤った翻訳は BoWで区別できる 文とBoWの両方を対象とする 手法を提案 →
T.2よりT.1を優遇 9
Bag-of-Words Generation マルチラベル分類問題のようにBoWを生成 Decoderの出力である単語レベルのスコアベクトル を 合計して、文レベルのスコアベクトルを得る 文レベルのスコアベクトルは、文中の任意の位置に
対応する単語が出現する確率を表す 10
Notation データセットに含まれるサンプル数:N i番目のサンプル:(, ) (x: source, y: target)
= 1 , 2 , … , = 1 , 2 , … , = 1 , 2 , … , はのBoWを表す 11
Bag-of-Words Generation 12 = softmax = �
Targets and Loss Function 文の翻訳とBoWの生成でそれぞれ損失関数(1 , 2 )を定義
重み で2つの損失を足し合わせる() (𝑖𝑖 : epoch , k, : fixed-value) 1 = − � =1 log l2 = − � =1 log = 1 + 2 = min(, + 𝛼𝛼) 13 𝑖𝑖
Experiments LDCコーパス(1.25M)で学習、NIST翻訳タスクで評価 語彙サイズを英中それぞれ5万語に設定 BLEUで評価 14
Results 15 4.55 BLEU points↑
Results 16 4.55 BLEU points↑
Results 17
Conclusions 正解訳とBoWの両方を考慮する手法を提案 提案手法が強力なベースラインに対して優位である結果 Morphologically-rich language*や低資源言語において どのように適用するかについて今後の課題とする *
文法的関係が相対位置や助詞ではなく単語の変化で 決まるような言語 18