Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Bag-of-Words as Target for Neural Machine...
Search
Yumeto Inaoka
January 22, 2019
Research
0
190
文献紹介: Bag-of-Words as Target for Neural Machine Translation
2019/1/22の文献紹介で発表
Yumeto Inaoka
January 22, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
370
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
250
Other Decks in Research
See All in Research
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
310
超高速データサイエンス
matsui_528
2
370
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
610
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
360
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
180
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
200
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
520
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
910
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
470
Featured
See All Featured
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
Everyday Curiosity
cassininazir
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
310
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Testing 201, or: Great Expectations
jmmastey
46
8k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
120
GitHub's CSS Performance
jonrohan
1032
470k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Transcript
1 Bag-of-Words as Target for Neural Machine Translation 文献紹介 2019/1/22
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature • Bag-of-Words as Target for Neural Machine Translation •
Shuming Ma, Xu SUN, Yizhong Wang, Junyang Lin • Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 332-338, 2018. 2
Abstract 翻訳において正解はひとつじゃない 既存のNMTではひとつのみを正解として使用 → 他の正解は誤りとして学習される 正解同士は似たBag-of-Words (BoW)
を共有する → BoWによって正解とそれ以外を区別できる 学習セットにない正解を考慮するためにBoWを利用 → 中国語-英語の翻訳において優位性を確認 3
Introduction NMTは首尾一貫の妥当な翻訳の生成ができる 現在のNeural Machine Translation (NMT)の 多くはSequence-to-Sequence モデル(Seq2Seq)に
基づいている 4
Seq2Seq (Overview) 5 私 は 元気だ <BOS> I am fine
<EOS> 入力文 出力文 Encoder Decoder
Seq2Seq (Encoder) 6 私 は 元気だ One-hot vector Embedding layer
Recurrent layer 入力文
Seq2Seq (Decoder) 7 I <BOS> I am fine am fine
<EOS> One-hot vector Embedding layer Recurrent layer One-hot vector Output layer 出力文
Introduction NMTではひとつの正解のみを 学習に用いる 他の正解は誤った翻訳と学習 → 悪影響を与える可能性 8
Introduction 正しい翻訳は似たBoWを共有 → 正しい翻訳と誤った翻訳は BoWで区別できる 文とBoWの両方を対象とする 手法を提案 →
T.2よりT.1を優遇 9
Bag-of-Words Generation マルチラベル分類問題のようにBoWを生成 Decoderの出力である単語レベルのスコアベクトル を 合計して、文レベルのスコアベクトルを得る 文レベルのスコアベクトルは、文中の任意の位置に
対応する単語が出現する確率を表す 10
Notation データセットに含まれるサンプル数:N i番目のサンプル:(, ) (x: source, y: target)
= 1 , 2 , … , = 1 , 2 , … , = 1 , 2 , … , はのBoWを表す 11
Bag-of-Words Generation 12 = softmax = �
Targets and Loss Function 文の翻訳とBoWの生成でそれぞれ損失関数(1 , 2 )を定義
重み で2つの損失を足し合わせる() (𝑖𝑖 : epoch , k, : fixed-value) 1 = − � =1 log l2 = − � =1 log = 1 + 2 = min(, + 𝛼𝛼) 13 𝑖𝑖
Experiments LDCコーパス(1.25M)で学習、NIST翻訳タスクで評価 語彙サイズを英中それぞれ5万語に設定 BLEUで評価 14
Results 15 4.55 BLEU points↑
Results 16 4.55 BLEU points↑
Results 17
Conclusions 正解訳とBoWの両方を考慮する手法を提案 提案手法が強力なベースラインに対して優位である結果 Morphologically-rich language*や低資源言語において どのように適用するかについて今後の課題とする *
文法的関係が相対位置や助詞ではなく単語の変化で 決まるような言語 18