Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20250531 JAWS-UG佐賀 生成AI
Search
midnight480
June 01, 2025
Technology
0
98
20250531 JAWS-UG佐賀 生成AI
midnight480
June 01, 2025
Tweet
Share
More Decks by midnight480
See All by midnight480
AWS Summit Japan 2025 個人的参加レポート
midnight480
0
170
Amazon Q Developer for CLI の紹介
midnight480
0
140
Postman Flows ✖️ Backlog API で可能性を探る
midnight480
0
150
Amazon Q Developer for CLIの基本的な使い方と便利なコマンドの紹介
midnight480
0
300
Amazon Q Developer for CLI 〜 Blender、Backlog GitをMCPで操作してみた 〜
midnight480
0
230
Control policies for AWS Organizations
midnight480
0
160
20240201_JAWS-UG_SAGA
midnight480
0
130
Reintroduction to AWS Multiple Account Management
midnight480
0
120
Try Dify self-hosted on AWS
midnight480
0
96
Other Decks in Technology
See All in Technology
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
2
570
Retrospectiveを振り返ろう
nakasho
0
130
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
220
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
4
1.2k
re:Inventに行くまでにやっておきたいこと
nagisa53
0
600
AI-Readyを目指した非構造化データのメダリオンアーキテクチャ
r_miura
1
340
Kubernetes self-healing of your workload
hwchiu
0
580
組織全員で向き合うAI Readyなデータ利活用
gappy50
4
1.3k
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
110
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
300
Okta Identity Governanceで実現する最小権限の原則 / Implementing the Principle of Least Privilege with Okta Identity Governance
tatsumin39
0
180
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
150
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
The World Runs on Bad Software
bkeepers
PRO
72
11k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Build your cross-platform service in a week with App Engine
jlugia
233
18k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Side Projects
sachag
455
43k
Documentation Writing (for coders)
carmenintech
75
5.1k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
生成AIの基礎と活用 2025-05-31 / JAWS-UG佐賀 生成AIの基礎と活用 © Tetsuya Shibao
アジェンダ 1. 生成AIとは 2. 生成AIの歴史 第一次ブーム(1950-1960年代) 第二次ブーム(1980-1990年代) 第三次ブーム(2010年代前半) 3. 生成AIの技術的基礎
4. トランスフォーマーの革新 5. ChatGPTの登場と普及 6. 生成AIの未来 7. Difyを使った生成AI活用 生成AIの基礎と活用 © Tetsuya Shibao
生成AIとは 人工知能が新しいコンテンツを生成する技術 テキスト、画像、音声、動画など様々な形式 人間の創造性を模倣・拡張 参考: 生成AIとは?基本概念と活用事例を解説 生成AIの基礎と活用 © Tetsuya Shibao
生成AIの特徴 創造性:新しいコンテンツの生成 適応性:様々な入力への対応 学習能力:データからの知識獲得 汎用性:複数のタスクに対応 参考: 生成AIの特徴と活用シーン 生成AIの基礎と活用 © Tetsuya
Shibao
第一次生成AIブーム(1950-1960年代) 時代背景 コンピュータの黎明期 人工知能研究の始まり 単純なルールベースのシステム 参考: 人工知能の歴史 生成AIの基礎と活用 © Tetsuya
Shibao
第一次ブームの代表例:ELIZA(1966年) 心理療法士を模倣した会話システム 単純なパターンマッチング キーワードに基づく応答生成 参考: ELIZA - 最初のチャットボット 生成AIの基礎と活用 ©
Tetsuya Shibao
第一次ブームの限界 文脈理解の欠如 固定された応答パターン 真の対話は不可能 技術的制約による限界 参考: 初期AIの限界と課題 生成AIの基礎と活用 © Tetsuya
Shibao
第二次生成AIブーム(1980-1990年代) 時代背景 エキスパートシステムの台頭 知識ベースの構築 ルールベースの推論システム 参考: エキスパートシステムの歴史 生成AIの基礎と活用 © Tetsuya
Shibao
第二次ブームの代表例:エキスパートシステム 専門家の知識をルール化 推論エンジンによる問題解決 限定的な専門分野での活用 参考: エキスパートシステムの仕組み 生成AIの基礎と活用 © Tetsuya Shibao
第二次ブームの特徴 知識ベースの重要性 ルールベースの推論 専門分野特化型 柔軟性の欠如 参考: 知識ベースシステムの特徴 生成AIの基礎と活用 © Tetsuya
Shibao
第三次生成AIブーム(2010年代前半) 時代背景 ディープラーニングの進化 ビッグデータの活用 GPUの性能向上 参考: ディープラーニングの進化 生成AIの基礎と活用 © Tetsuya
Shibao
第三次ブームの技術革新 ニューラルネットワークの進化 画像認識の飛躍的向上 自然言語処理の進歩 参考: ニューラルネットワークの進化 生成AIの基礎と活用 © Tetsuya Shibao
機械学習の基礎 教師あり学習 入力と出力のペアから学習 分類問題と回帰問題 損失関数による最適化 参考: 機械学習の基礎 生成AIの基礎と活用 © Tetsuya
Shibao
強化学習の基礎 環境との相互作用 報酬に基づく学習 試行錯誤による最適化 参考: 強化学習の基礎 生成AIの基礎と活用 © Tetsuya Shibao
トランスフォーマーの登場(2017年) 画期的な特徴 Attention機構の革新 並列処理による高速化 長文の文脈理解 参考: トランスフォーマーの仕組み 生成AIの基礎と活用 © Tetsuya
Shibao
Attention機構の仕組み クエリ(Q) 、キー(K) 、バリュー(V)の概念 スケーリングドットプロダクトアテンション 自己注意機構と相互注意機構 参考: Attention機構の詳細 生成AIの基礎と活用 ©
Tetsuya Shibao
ChatGPTの登場(2022年) 革新的な特徴 GPT-3.5のリリース 自然な対話能力 幅広い知識と応用 参考: ChatGPTの概要 生成AIの基礎と活用 © Tetsuya
Shibao
ChatGPTの影響 ビジネスへの急速な普及 新しいAI活用の形 プロンプトエンジニアリングの重要性 生成AIの一般化 参考: ChatGPTのビジネスインパクト 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIの未来:開発者側 技術的課題 モデルの効率化 計算リソースの最適化 新しいアーキテクチャの開発 参考: 生成AIの技術的課題 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIの未来:活用者側 ビジネス応用 カスタマイズと最適化 プロンプトエンジニアリング ドメイン特化型AI 参考: 生成AIのビジネス応用 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIを活用しないリスク 生産性の低下 競争力の喪失 新しいビジネス機会の損失 技術的負債の蓄積 参考: 生成AIの導入リスク 生成AIの基礎と活用 © Tetsuya
Shibao
Difyとは ノーコードAIアプリケーション開発プラットフォーム カスタムAIアシスタントの作成 ビジネスプロセスの自動化 参考: Dify公式サイト 生成AIの基礎と活用 © Tetsuya Shibao
Difyの主な機能 プロンプトの管理 データの連携 アプリケーションのデプロイ モニタリングと分析 参考: Difyの機能紹介 生成AIの基礎と活用 © Tetsuya
Shibao
Difyを使った活用例 カスタムチャットボット ドキュメント生成 データ分析 ビジネスプロセス自動化 参考: Difyの活用事例 生成AIの基礎と活用 © Tetsuya
Shibao
ハンズオンで実践! Difyを使った生成AI活用を体験しましょう 2025-05-31 / JAWS-UG佐賀 生成AIの基礎と活用 © Tetsuya Shibao