$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20250531 JAWS-UG佐賀 生成AI
Search
midnight480
June 01, 2025
Technology
0
130
20250531 JAWS-UG佐賀 生成AI
midnight480
June 01, 2025
Tweet
Share
More Decks by midnight480
See All by midnight480
SAGA IT Community Day 2026 Winter 2025.12.20
midnight480
0
29
Kiroで実現する “Spec Driven Development”
midnight480
0
24
Kiro CLI 〜無料でここまでできる!〜
midnight480
0
49
AWS Summit Japan 2025 個人的参加レポート
midnight480
0
190
Amazon Q Developer for CLI の紹介
midnight480
0
160
Postman Flows ✖️ Backlog API で可能性を探る
midnight480
0
170
Amazon Q Developer for CLIの基本的な使い方と便利なコマンドの紹介
midnight480
0
410
Amazon Q Developer for CLI 〜 Blender、Backlog GitをMCPで操作してみた 〜
midnight480
0
250
Control policies for AWS Organizations
midnight480
0
190
Other Decks in Technology
See All in Technology
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
230
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.1k
Introduce marp-ai-slide-generator
itarutomy
0
130
LayerX QA Night#1
koyaman2
0
260
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
障害対応訓練、その前に
coconala_engineer
0
200
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
260
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
4.3k
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
180
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
Featured
See All Featured
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
Thoughts on Productivity
jonyablonski
73
5k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Mind Mapping
helmedeiros
PRO
0
39
Code Review Best Practice
trishagee
74
19k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
190
Bash Introduction
62gerente
615
210k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
GraphQLとの向き合い方2022年版
quramy
50
14k
Transcript
生成AIの基礎と活用 2025-05-31 / JAWS-UG佐賀 生成AIの基礎と活用 © Tetsuya Shibao
アジェンダ 1. 生成AIとは 2. 生成AIの歴史 第一次ブーム(1950-1960年代) 第二次ブーム(1980-1990年代) 第三次ブーム(2010年代前半) 3. 生成AIの技術的基礎
4. トランスフォーマーの革新 5. ChatGPTの登場と普及 6. 生成AIの未来 7. Difyを使った生成AI活用 生成AIの基礎と活用 © Tetsuya Shibao
生成AIとは 人工知能が新しいコンテンツを生成する技術 テキスト、画像、音声、動画など様々な形式 人間の創造性を模倣・拡張 参考: 生成AIとは?基本概念と活用事例を解説 生成AIの基礎と活用 © Tetsuya Shibao
生成AIの特徴 創造性:新しいコンテンツの生成 適応性:様々な入力への対応 学習能力:データからの知識獲得 汎用性:複数のタスクに対応 参考: 生成AIの特徴と活用シーン 生成AIの基礎と活用 © Tetsuya
Shibao
第一次生成AIブーム(1950-1960年代) 時代背景 コンピュータの黎明期 人工知能研究の始まり 単純なルールベースのシステム 参考: 人工知能の歴史 生成AIの基礎と活用 © Tetsuya
Shibao
第一次ブームの代表例:ELIZA(1966年) 心理療法士を模倣した会話システム 単純なパターンマッチング キーワードに基づく応答生成 参考: ELIZA - 最初のチャットボット 生成AIの基礎と活用 ©
Tetsuya Shibao
第一次ブームの限界 文脈理解の欠如 固定された応答パターン 真の対話は不可能 技術的制約による限界 参考: 初期AIの限界と課題 生成AIの基礎と活用 © Tetsuya
Shibao
第二次生成AIブーム(1980-1990年代) 時代背景 エキスパートシステムの台頭 知識ベースの構築 ルールベースの推論システム 参考: エキスパートシステムの歴史 生成AIの基礎と活用 © Tetsuya
Shibao
第二次ブームの代表例:エキスパートシステム 専門家の知識をルール化 推論エンジンによる問題解決 限定的な専門分野での活用 参考: エキスパートシステムの仕組み 生成AIの基礎と活用 © Tetsuya Shibao
第二次ブームの特徴 知識ベースの重要性 ルールベースの推論 専門分野特化型 柔軟性の欠如 参考: 知識ベースシステムの特徴 生成AIの基礎と活用 © Tetsuya
Shibao
第三次生成AIブーム(2010年代前半) 時代背景 ディープラーニングの進化 ビッグデータの活用 GPUの性能向上 参考: ディープラーニングの進化 生成AIの基礎と活用 © Tetsuya
Shibao
第三次ブームの技術革新 ニューラルネットワークの進化 画像認識の飛躍的向上 自然言語処理の進歩 参考: ニューラルネットワークの進化 生成AIの基礎と活用 © Tetsuya Shibao
機械学習の基礎 教師あり学習 入力と出力のペアから学習 分類問題と回帰問題 損失関数による最適化 参考: 機械学習の基礎 生成AIの基礎と活用 © Tetsuya
Shibao
強化学習の基礎 環境との相互作用 報酬に基づく学習 試行錯誤による最適化 参考: 強化学習の基礎 生成AIの基礎と活用 © Tetsuya Shibao
トランスフォーマーの登場(2017年) 画期的な特徴 Attention機構の革新 並列処理による高速化 長文の文脈理解 参考: トランスフォーマーの仕組み 生成AIの基礎と活用 © Tetsuya
Shibao
Attention機構の仕組み クエリ(Q) 、キー(K) 、バリュー(V)の概念 スケーリングドットプロダクトアテンション 自己注意機構と相互注意機構 参考: Attention機構の詳細 生成AIの基礎と活用 ©
Tetsuya Shibao
ChatGPTの登場(2022年) 革新的な特徴 GPT-3.5のリリース 自然な対話能力 幅広い知識と応用 参考: ChatGPTの概要 生成AIの基礎と活用 © Tetsuya
Shibao
ChatGPTの影響 ビジネスへの急速な普及 新しいAI活用の形 プロンプトエンジニアリングの重要性 生成AIの一般化 参考: ChatGPTのビジネスインパクト 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIの未来:開発者側 技術的課題 モデルの効率化 計算リソースの最適化 新しいアーキテクチャの開発 参考: 生成AIの技術的課題 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIの未来:活用者側 ビジネス応用 カスタマイズと最適化 プロンプトエンジニアリング ドメイン特化型AI 参考: 生成AIのビジネス応用 生成AIの基礎と活用 © Tetsuya
Shibao
生成AIを活用しないリスク 生産性の低下 競争力の喪失 新しいビジネス機会の損失 技術的負債の蓄積 参考: 生成AIの導入リスク 生成AIの基礎と活用 © Tetsuya
Shibao
Difyとは ノーコードAIアプリケーション開発プラットフォーム カスタムAIアシスタントの作成 ビジネスプロセスの自動化 参考: Dify公式サイト 生成AIの基礎と活用 © Tetsuya Shibao
Difyの主な機能 プロンプトの管理 データの連携 アプリケーションのデプロイ モニタリングと分析 参考: Difyの機能紹介 生成AIの基礎と活用 © Tetsuya
Shibao
Difyを使った活用例 カスタムチャットボット ドキュメント生成 データ分析 ビジネスプロセス自動化 参考: Difyの活用事例 生成AIの基礎と活用 © Tetsuya
Shibao
ハンズオンで実践! Difyを使った生成AI活用を体験しましょう 2025-05-31 / JAWS-UG佐賀 生成AIの基礎と活用 © Tetsuya Shibao