Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rの基礎9 基本的な統計と検定
Search
xjorv
January 23, 2021
Education
0
210
Rの基礎9 基本的な統計と検定
Rの基礎9では、Rでの統計や検定の基礎について説明します。
xjorv
January 23, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.7k
コンパートメントモデルをStanで解く
xjorv
0
460
生物学的同等性試験 検出力の計算法
xjorv
0
3.6k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.3k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.4k
皮膜4
xjorv
0
2.3k
皮膜3
xjorv
0
2.3k
Other Decks in Education
See All in Education
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
320
ARアプリを活用した防災まち歩きデータ作成ハンズオン
nro2daisuke
0
180
令和政経義塾第2期説明会
nxji
0
240
[Segah 2025] Gamified Interventions for Composting Behavior in the Workplace
ezefranca
0
150
高校におけるプログラミング教育を考える
naokikato
PRO
0
160
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
140
H5P-työkalut
matleenalaakso
4
40k
大学院進学について(2025年度版)
imash
0
130
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
7
1.3k
チーム開発における責任と感謝の話
ssk1991
0
320
CHARMS-HP-Banner
weltraumreisende
0
1k
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
130
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
A Tale of Four Properties
chriscoyier
160
23k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Site-Speed That Sticks
csswizardry
11
880
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Transcript
Rの基礎 9 基本的な統計と検定 2020/8/15 Ver. 1.0
基本統計量 ベクトルの平均・分散・標準偏差などは関数で簡単に求まる mean sd var max min quantile sum median
平均値 標準偏差 分散 最大値 最小値 4分位値 合計 中央値
summary関数 基本統計量はsummary関数で表示できる データがあれば、とりあえずsummary関数の引数にしてみる
確率分布と乱数 Rでは、確率分布に従った乱数を簡単に得ることができる *乱数: ランダムな数のこと。乱数シミュレーションなどで利用できる runif rnorm rbinom rpois 一様分布 正規分布
二項分布 ポアソン分布
確率分布のグラフ histやggplot2のgeom_densityを用いる *平均0、標準偏差1の正規乱数200000個を生成し、ヒストグラムや確率密度関数にしたもの
相関係数 相関係数も相関行列もcor関数で得られる
直線回帰 直線回帰はlm関数で計算できる • Rでは、Y~Xという表現で2数の関係を示す • Yが従属変数、Xが説明変数となる • Interceptは切片、説明変数の数字は傾きとなる 切片 傾き
直線回帰の詳しい情報 回帰の結果をsummary関数の引数に取る 切片と傾き 切片と傾きの検定結果 *検定では傾きや切片が有意にゼロから離れていることを示す
重回帰分析 重回帰もlm関数で計算できる • 説明変数を+でつなぐだけ • +を*に変えると、交互作用を計算できる
平均の差の検定: t検定 t検定は、t.test関数で実行できる t.test(1つ目の集団, 2つ目の集団)で計算できる これがp値 Welchは等分散でないときのt検定の拡張
平均の差の検定: ウィルコクソンの順位和検定 ウィルコクソンはt検定のノンパラメトリック*版 wilcox.test(1つ目の集団, 2つ目の集団)で計算できる *ノンパラメトリック: 集団が正規分布しないときに使用する検定手法。検出力が低い
分散分析 aov関数で計算できる aov(差を知りたいデータ~カテゴリデータ)で計算できる *線形回帰のlmをaovに変えただけ。summaryで情報が得られるのも同じ。+を使えば多元にできるし、*を使えば交互作用を調べられる
カテゴリデータ: factor(因子) カテゴリを示すときに因子を多用する • データフレームを読み込むと文字列は因子に変換*される • 数字に名前がついたもの • 同じ名前のものが同じカテゴリとして扱われる *stringAsFactors
= Tがデフォルトなので、read.table関数で読み込むと変換が起きる
多重比較: Tukeyの方法 総当りの比較にはTukeyの方法を用いる TukeyHSD(aovの結果)で計算できる *他にScheffeやDunnett、Kruskal-Wallis、holm、Bonferroniの方法などがある
検出力の計算 検定の検出力はpowerから始まる関数で行う power.t.test, power.prop.test, power.anova.testなどがある これが検出力
例数の計算 例数もpowerから始まる関数で計算できる これが例数
まとめ • Rには統計に関する手法・パッケージが豊富にある • カテゴリデータの扱いに因子を用いる • 「R 統計手法」で検索すれば、だいたい手法が見つかる