$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making forest and funnel plots
Search
Graeme Hickey
October 03, 2016
Research
0
150
Making forest and funnel plots
Presented at the 30th Annual EACTS Meeting, Barcelona, Spain (1-5 October 2016)
Graeme Hickey
October 03, 2016
Tweet
Share
More Decks by Graeme Hickey
See All by Graeme Hickey
Joint modelling of longitudinal and time-to-event data: recent extensions
graemeleehickey
0
460
Risk: a statistician's viewpoint
graemeleehickey
1
1.3k
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
450
A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial
graemeleehickey
0
230
Dynamic survival prediction for multivariate joint models using the R package joineRML
graemeleehickey
0
780
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
360
What you need to know about statistics to read a journal article
graemeleehickey
1
460
Checking model assumptions with regression diagnostics
graemeleehickey
1
290
Performing repeated measures analysis
graemeleehickey
0
360
Other Decks in Research
See All in Research
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
280
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
100
20250725-bet-ai-day
cipepser
3
550
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
630
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
140
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
130
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
160
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
120
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
290
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.7k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
310
Agile that works and the tools we love
rasmusluckow
331
21k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
29
HDC tutorial
michielstock
0
260
Un-Boring Meetings
codingconduct
0
160
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
47
33k
Utilizing Notion as your number one productivity tool
mfonobong
2
180
Transcript
Meta-analysis from start to finish Graeme L. Hickey* Department of
Biostatistics, University of Liverpool * No conflicts of interest
None
Early all-cause mortality Five randomized trials
TAVI SAVR Trial Year of publication Events, n Total, n
Events, n Total, n NOTION 2015 3 139 5 135 PARTNER 2011 12 348 22 351 PARTNER 2A 2016 39 1011 41 1021 STACCATO 2012 2 34 0 36 US CoreValve 2014 13 390 16 357 Outcome: early all-cause mortality
Jones et al (39) Kobrin et al (40) Latib et
al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Osnabrugge et al (13) Papadopoulos et al (44) Piazza et al (14) Santarpino et al (45) Schymik et al (15) Stöhr et al (46) Tamburino et al (16) Thakkar et al (47) Thongprayoon et al (48) Thourani et al (17) Walther et al (49) Wendt et al (50) Zweng et al (51) Random-effects model Heterogeneity: l2 = 39.3%; tau-squared = 0.1507; P = 0.017 Random-effects model Heterogeneity: l2 = 37%; tau-squared = 0.1253; P = 0.0172 Test for overall effect: P = 0.9041 Test for subgroup differences: Q = 2.2; P = 0.1415 0 20 2 20 20 1 2 3 33 3 3 21 20 2 3 12 10 9 2 287 356 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) 0.65 (0.10–4.10) 0.46 (0.11–1.98) 1.35 (0.79–2.31) 0.59 (0.14–2.53) 0.32 (0.09–1.21) 1.70 (0.82–3.51) 0.83 (0.45–1.51) 1.00 (0.13–7.60) 1.51 (0.25–9.12) 0.27 (0.14–0.52) 0.63 (0.27–1.48) 2.72 (0.69–10.63) 1.00 (0.13–7.43) 1.08 (0.84–1.38) 1.01 (0.81–1.26) 0.0 4.8 1.1 6.1 5.2 0.4 1.2 1.8 6.1 1.8 2.1 4.6 5.5 1.0 1.3 5.1 3.9 2.0 1.0 81.7 100 0 15 2 45 19 0 3 6 25 5 9 13 24 2 2 38 15 3 2 309 393 20 194 111 595 204 28 42 40 405 102 216 175 650 30 195 1077 100 62 44 5657 7579 20 194 111 1785 408 28 42 40 405 102 216 175 650 30 195 944 100 51 44 6907 8807 0.01 0.1 1 10 100 Favors TAVI Favors SAVR Knapp–Hartung random-effects OR and 95% CI for 30-day all-cause mortality stratified by study design. NOTION = Nordic Aortic Valve Intervention; OR = odds ratio; PARTNER = Placement of Aortic Transcatheter Valves; SAVR = surgical aortic valve replacement; STACCATO = A Prospective, Randomised Trial of Transapical Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Operable Elderly Patients With Aortic Stenosis; TAVI = transcatheter aortic valve implantation. * Percentages do not sum to 18.3% and 81.7% for randomized and matched studies, respectively, because of rounding. www.annals.org Annals of Internal Medicine • Vol. 165 No. 5 • 6 September 2016 337 Downloaded From: http://annals.org/ by a University of Liverpool User on 09/21/2016 Figure 1. Forest plot for early all-cause mortality in the overall population. Study (Reference) Randomized studies NOTION (9, 10) PARTNER (3–5) PARTNER 2A (11) STACCATO (26) U.S. CoreValve (6–8) Random-effects model Heterogeneity: l2 = 0%; tau-squared = 0; P = 0.4571 Matched studies Ailawadi et al (27) Appel et al (28) Biancari et al (29) Conradi et al (30) D'Onofrio et al (31) Fusari et al (33) Guarracino et al (34) Hannan et al (35) Higgins et al (36) Holzhey et al (37) Johansson et al (38) Jones et al (39) Kobrin et al (40) Latib et al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Events, n 3 12 39 2 13 69 34 3 10 6 2 0 3 19 6 14 4 0 20 2 20 20 1 OR (95% CI) 0.57 (0.13–2.45) 0.53 (0.26–1.10) 0.96 (0.61–1.50) 5.62 (0.26–121.32) 0.73 (0.35–1.55) 0.80 (0.51–1.25) 1.61 (0.92–2.81) 1.54 (0.24–9.66) 5.30 (1.14–24.63) 0.85 (0.27–2.63) 5.27 (0.24–113.60) 0.19 (0.01–4.06) 3.22 (0.32–32.89) 1.00 (0.52–1.92) 1.57 (0.41–6.00) 0.76 (0.36–1.58) 1.00 (0.23–4.31) 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) Weight (Random), %* 1.8 4.7 6.9 0.5 4.5 18.3 5.9 1.2 1.6 2.6 0.5 0.5 0.8 5.2 2.1 4.6 1.8 0.0 4.8 1.1 6.1 5.2 0.4 Events, n 5 22 41 0 16 84 22 2 2 7 0 2 1 19 4 18 4 0 15 2 45 19 0 Total, n 139 348 1011 34 390 1922 340 45 144 82 38 30 30 405 46 167 40 20 194 111 595 204 28 Total, n 135 351 1021 36 357 1900 340 45 144 82 38 30 30 405 46 167 40 20 194 111 1785 408 28 TAVI SAVR Systematic Review and Meta-analysis of TAVI Versus SAVR REVIEW NB. 31 observational studies have been deleted from the reported forest plot Heterogeneity statistics Labelled table of raw data Effect sizes & confidence intervals Weights Pooled estimate Direction labels Nicely formatted axes Forest plot with null line
Systematic review Data extraction Software 51 packages available for meta-analysis
71 packages available for meta-analysis RevMan $$$
+ other software packages & online web calculators
* Only for preparation of Cochrane Reviews or for purely
academic use.
None
None
None
None
1 2 3 5 4 > Finish 6
None
None
None
None
None
None