Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making forest and funnel plots
Search
Graeme Hickey
October 03, 2016
Research
0
150
Making forest and funnel plots
Presented at the 30th Annual EACTS Meeting, Barcelona, Spain (1-5 October 2016)
Graeme Hickey
October 03, 2016
Tweet
Share
More Decks by Graeme Hickey
See All by Graeme Hickey
Joint modelling of longitudinal and time-to-event data: recent extensions
graemeleehickey
0
440
Risk: a statistician's viewpoint
graemeleehickey
1
950
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
420
A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial
graemeleehickey
0
210
Dynamic survival prediction for multivariate joint models using the R package joineRML
graemeleehickey
0
700
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
340
What you need to know about statistics to read a journal article
graemeleehickey
1
420
Checking model assumptions with regression diagnostics
graemeleehickey
1
280
Performing repeated measures analysis
graemeleehickey
0
310
Other Decks in Research
See All in Research
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
290
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1.1k
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
430
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
470
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
6k
Batch Processing Algorithm for Elliptic Curve Operations and Its AVX-512 Implementation
herumi
0
120
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
240
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
160
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
3
140
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
580
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
830
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
What's in a price? How to price your products and services
michaelherold
244
12k
Navigating Team Friction
lara
183
15k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Code Review Best Practice
trishagee
67
18k
The Cult of Friendly URLs
andyhume
78
6.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Transcript
Meta-analysis from start to finish Graeme L. Hickey* Department of
Biostatistics, University of Liverpool * No conflicts of interest
None
Early all-cause mortality Five randomized trials
TAVI SAVR Trial Year of publication Events, n Total, n
Events, n Total, n NOTION 2015 3 139 5 135 PARTNER 2011 12 348 22 351 PARTNER 2A 2016 39 1011 41 1021 STACCATO 2012 2 34 0 36 US CoreValve 2014 13 390 16 357 Outcome: early all-cause mortality
Jones et al (39) Kobrin et al (40) Latib et
al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Osnabrugge et al (13) Papadopoulos et al (44) Piazza et al (14) Santarpino et al (45) Schymik et al (15) Stöhr et al (46) Tamburino et al (16) Thakkar et al (47) Thongprayoon et al (48) Thourani et al (17) Walther et al (49) Wendt et al (50) Zweng et al (51) Random-effects model Heterogeneity: l2 = 39.3%; tau-squared = 0.1507; P = 0.017 Random-effects model Heterogeneity: l2 = 37%; tau-squared = 0.1253; P = 0.0172 Test for overall effect: P = 0.9041 Test for subgroup differences: Q = 2.2; P = 0.1415 0 20 2 20 20 1 2 3 33 3 3 21 20 2 3 12 10 9 2 287 356 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) 0.65 (0.10–4.10) 0.46 (0.11–1.98) 1.35 (0.79–2.31) 0.59 (0.14–2.53) 0.32 (0.09–1.21) 1.70 (0.82–3.51) 0.83 (0.45–1.51) 1.00 (0.13–7.60) 1.51 (0.25–9.12) 0.27 (0.14–0.52) 0.63 (0.27–1.48) 2.72 (0.69–10.63) 1.00 (0.13–7.43) 1.08 (0.84–1.38) 1.01 (0.81–1.26) 0.0 4.8 1.1 6.1 5.2 0.4 1.2 1.8 6.1 1.8 2.1 4.6 5.5 1.0 1.3 5.1 3.9 2.0 1.0 81.7 100 0 15 2 45 19 0 3 6 25 5 9 13 24 2 2 38 15 3 2 309 393 20 194 111 595 204 28 42 40 405 102 216 175 650 30 195 1077 100 62 44 5657 7579 20 194 111 1785 408 28 42 40 405 102 216 175 650 30 195 944 100 51 44 6907 8807 0.01 0.1 1 10 100 Favors TAVI Favors SAVR Knapp–Hartung random-effects OR and 95% CI for 30-day all-cause mortality stratified by study design. NOTION = Nordic Aortic Valve Intervention; OR = odds ratio; PARTNER = Placement of Aortic Transcatheter Valves; SAVR = surgical aortic valve replacement; STACCATO = A Prospective, Randomised Trial of Transapical Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Operable Elderly Patients With Aortic Stenosis; TAVI = transcatheter aortic valve implantation. * Percentages do not sum to 18.3% and 81.7% for randomized and matched studies, respectively, because of rounding. www.annals.org Annals of Internal Medicine • Vol. 165 No. 5 • 6 September 2016 337 Downloaded From: http://annals.org/ by a University of Liverpool User on 09/21/2016 Figure 1. Forest plot for early all-cause mortality in the overall population. Study (Reference) Randomized studies NOTION (9, 10) PARTNER (3–5) PARTNER 2A (11) STACCATO (26) U.S. CoreValve (6–8) Random-effects model Heterogeneity: l2 = 0%; tau-squared = 0; P = 0.4571 Matched studies Ailawadi et al (27) Appel et al (28) Biancari et al (29) Conradi et al (30) D'Onofrio et al (31) Fusari et al (33) Guarracino et al (34) Hannan et al (35) Higgins et al (36) Holzhey et al (37) Johansson et al (38) Jones et al (39) Kobrin et al (40) Latib et al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Events, n 3 12 39 2 13 69 34 3 10 6 2 0 3 19 6 14 4 0 20 2 20 20 1 OR (95% CI) 0.57 (0.13–2.45) 0.53 (0.26–1.10) 0.96 (0.61–1.50) 5.62 (0.26–121.32) 0.73 (0.35–1.55) 0.80 (0.51–1.25) 1.61 (0.92–2.81) 1.54 (0.24–9.66) 5.30 (1.14–24.63) 0.85 (0.27–2.63) 5.27 (0.24–113.60) 0.19 (0.01–4.06) 3.22 (0.32–32.89) 1.00 (0.52–1.92) 1.57 (0.41–6.00) 0.76 (0.36–1.58) 1.00 (0.23–4.31) 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) Weight (Random), %* 1.8 4.7 6.9 0.5 4.5 18.3 5.9 1.2 1.6 2.6 0.5 0.5 0.8 5.2 2.1 4.6 1.8 0.0 4.8 1.1 6.1 5.2 0.4 Events, n 5 22 41 0 16 84 22 2 2 7 0 2 1 19 4 18 4 0 15 2 45 19 0 Total, n 139 348 1011 34 390 1922 340 45 144 82 38 30 30 405 46 167 40 20 194 111 595 204 28 Total, n 135 351 1021 36 357 1900 340 45 144 82 38 30 30 405 46 167 40 20 194 111 1785 408 28 TAVI SAVR Systematic Review and Meta-analysis of TAVI Versus SAVR REVIEW NB. 31 observational studies have been deleted from the reported forest plot Heterogeneity statistics Labelled table of raw data Effect sizes & confidence intervals Weights Pooled estimate Direction labels Nicely formatted axes Forest plot with null line
Systematic review Data extraction Software 51 packages available for meta-analysis
71 packages available for meta-analysis RevMan $$$
+ other software packages & online web calculators
* Only for preparation of Cochrane Reviews or for purely
academic use.
None
None
None
None
1 2 3 5 4 > Finish 6
None
None
None
None
None
None