Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making forest and funnel plots
Search
Graeme Hickey
October 03, 2016
Research
0
150
Making forest and funnel plots
Presented at the 30th Annual EACTS Meeting, Barcelona, Spain (1-5 October 2016)
Graeme Hickey
October 03, 2016
Tweet
Share
More Decks by Graeme Hickey
See All by Graeme Hickey
Joint modelling of longitudinal and time-to-event data: recent extensions
graemeleehickey
0
430
Risk: a statistician's viewpoint
graemeleehickey
1
880
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
410
A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial
graemeleehickey
0
210
Dynamic survival prediction for multivariate joint models using the R package joineRML
graemeleehickey
0
670
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
340
What you need to know about statistics to read a journal article
graemeleehickey
1
410
Checking model assumptions with regression diagnostics
graemeleehickey
1
280
Performing repeated measures analysis
graemeleehickey
0
290
Other Decks in Research
See All in Research
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
300
システムから変える 自分と世界を変えるシステムチェンジの方法論 / Systems Change Approaches
dmattsun
3
900
ソフトウェア研究における脅威モデリング
laysakura
0
930
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
5
1.6k
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
800
marukotenant01/tenant-20240916
marketing2024
0
620
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.1k
Whoisの闇
hirachan
3
160
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
200
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
430
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Facilitating Awesome Meetings
lara
50
6.1k
Optimizing for Happiness
mojombo
376
70k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Side Projects
sachag
452
42k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Automating Front-end Workflow
addyosmani
1366
200k
Mobile First: as difficult as doing things right
swwweet
222
9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Transcript
Meta-analysis from start to finish Graeme L. Hickey* Department of
Biostatistics, University of Liverpool * No conflicts of interest
None
Early all-cause mortality Five randomized trials
TAVI SAVR Trial Year of publication Events, n Total, n
Events, n Total, n NOTION 2015 3 139 5 135 PARTNER 2011 12 348 22 351 PARTNER 2A 2016 39 1011 41 1021 STACCATO 2012 2 34 0 36 US CoreValve 2014 13 390 16 357 Outcome: early all-cause mortality
Jones et al (39) Kobrin et al (40) Latib et
al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Osnabrugge et al (13) Papadopoulos et al (44) Piazza et al (14) Santarpino et al (45) Schymik et al (15) Stöhr et al (46) Tamburino et al (16) Thakkar et al (47) Thongprayoon et al (48) Thourani et al (17) Walther et al (49) Wendt et al (50) Zweng et al (51) Random-effects model Heterogeneity: l2 = 39.3%; tau-squared = 0.1507; P = 0.017 Random-effects model Heterogeneity: l2 = 37%; tau-squared = 0.1253; P = 0.0172 Test for overall effect: P = 0.9041 Test for subgroup differences: Q = 2.2; P = 0.1415 0 20 2 20 20 1 2 3 33 3 3 21 20 2 3 12 10 9 2 287 356 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) 0.65 (0.10–4.10) 0.46 (0.11–1.98) 1.35 (0.79–2.31) 0.59 (0.14–2.53) 0.32 (0.09–1.21) 1.70 (0.82–3.51) 0.83 (0.45–1.51) 1.00 (0.13–7.60) 1.51 (0.25–9.12) 0.27 (0.14–0.52) 0.63 (0.27–1.48) 2.72 (0.69–10.63) 1.00 (0.13–7.43) 1.08 (0.84–1.38) 1.01 (0.81–1.26) 0.0 4.8 1.1 6.1 5.2 0.4 1.2 1.8 6.1 1.8 2.1 4.6 5.5 1.0 1.3 5.1 3.9 2.0 1.0 81.7 100 0 15 2 45 19 0 3 6 25 5 9 13 24 2 2 38 15 3 2 309 393 20 194 111 595 204 28 42 40 405 102 216 175 650 30 195 1077 100 62 44 5657 7579 20 194 111 1785 408 28 42 40 405 102 216 175 650 30 195 944 100 51 44 6907 8807 0.01 0.1 1 10 100 Favors TAVI Favors SAVR Knapp–Hartung random-effects OR and 95% CI for 30-day all-cause mortality stratified by study design. NOTION = Nordic Aortic Valve Intervention; OR = odds ratio; PARTNER = Placement of Aortic Transcatheter Valves; SAVR = surgical aortic valve replacement; STACCATO = A Prospective, Randomised Trial of Transapical Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Operable Elderly Patients With Aortic Stenosis; TAVI = transcatheter aortic valve implantation. * Percentages do not sum to 18.3% and 81.7% for randomized and matched studies, respectively, because of rounding. www.annals.org Annals of Internal Medicine • Vol. 165 No. 5 • 6 September 2016 337 Downloaded From: http://annals.org/ by a University of Liverpool User on 09/21/2016 Figure 1. Forest plot for early all-cause mortality in the overall population. Study (Reference) Randomized studies NOTION (9, 10) PARTNER (3–5) PARTNER 2A (11) STACCATO (26) U.S. CoreValve (6–8) Random-effects model Heterogeneity: l2 = 0%; tau-squared = 0; P = 0.4571 Matched studies Ailawadi et al (27) Appel et al (28) Biancari et al (29) Conradi et al (30) D'Onofrio et al (31) Fusari et al (33) Guarracino et al (34) Hannan et al (35) Higgins et al (36) Holzhey et al (37) Johansson et al (38) Jones et al (39) Kobrin et al (40) Latib et al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Events, n 3 12 39 2 13 69 34 3 10 6 2 0 3 19 6 14 4 0 20 2 20 20 1 OR (95% CI) 0.57 (0.13–2.45) 0.53 (0.26–1.10) 0.96 (0.61–1.50) 5.62 (0.26–121.32) 0.73 (0.35–1.55) 0.80 (0.51–1.25) 1.61 (0.92–2.81) 1.54 (0.24–9.66) 5.30 (1.14–24.63) 0.85 (0.27–2.63) 5.27 (0.24–113.60) 0.19 (0.01–4.06) 3.22 (0.32–32.89) 1.00 (0.52–1.92) 1.57 (0.41–6.00) 0.76 (0.36–1.58) 1.00 (0.23–4.31) 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) Weight (Random), %* 1.8 4.7 6.9 0.5 4.5 18.3 5.9 1.2 1.6 2.6 0.5 0.5 0.8 5.2 2.1 4.6 1.8 0.0 4.8 1.1 6.1 5.2 0.4 Events, n 5 22 41 0 16 84 22 2 2 7 0 2 1 19 4 18 4 0 15 2 45 19 0 Total, n 139 348 1011 34 390 1922 340 45 144 82 38 30 30 405 46 167 40 20 194 111 595 204 28 Total, n 135 351 1021 36 357 1900 340 45 144 82 38 30 30 405 46 167 40 20 194 111 1785 408 28 TAVI SAVR Systematic Review and Meta-analysis of TAVI Versus SAVR REVIEW NB. 31 observational studies have been deleted from the reported forest plot Heterogeneity statistics Labelled table of raw data Effect sizes & confidence intervals Weights Pooled estimate Direction labels Nicely formatted axes Forest plot with null line
Systematic review Data extraction Software 51 packages available for meta-analysis
71 packages available for meta-analysis RevMan $$$
+ other software packages & online web calculators
* Only for preparation of Cochrane Reviews or for purely
academic use.
None
None
None
None
1 2 3 5 4 > Finish 6
None
None
None
None
None
None