Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making forest and funnel plots
Search
Graeme Hickey
October 03, 2016
Research
0
150
Making forest and funnel plots
Presented at the 30th Annual EACTS Meeting, Barcelona, Spain (1-5 October 2016)
Graeme Hickey
October 03, 2016
Tweet
Share
More Decks by Graeme Hickey
See All by Graeme Hickey
Joint modelling of longitudinal and time-to-event data: recent extensions
graemeleehickey
0
470
Risk: a statistician's viewpoint
graemeleehickey
1
1.4k
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
460
A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial
graemeleehickey
0
230
Dynamic survival prediction for multivariate joint models using the R package joineRML
graemeleehickey
0
790
Joint modelling of multivariate longitudinal and time-to-event data
graemeleehickey
0
370
What you need to know about statistics to read a journal article
graemeleehickey
1
470
Checking model assumptions with regression diagnostics
graemeleehickey
1
300
Performing repeated measures analysis
graemeleehickey
0
360
Other Decks in Research
See All in Research
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
超高速データサイエンス
matsui_528
2
380
LLMアプリケーションの透明性について
fufufukakaka
0
140
Remote sensing × Multi-modal meta survey
satai
4
710
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Believing is Seeing
oripsolob
1
56
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
Tell your own story through comics
letsgokoyo
1
810
Bash Introduction
62gerente
615
210k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
Transcript
Meta-analysis from start to finish Graeme L. Hickey* Department of
Biostatistics, University of Liverpool * No conflicts of interest
None
Early all-cause mortality Five randomized trials
TAVI SAVR Trial Year of publication Events, n Total, n
Events, n Total, n NOTION 2015 3 139 5 135 PARTNER 2011 12 348 22 351 PARTNER 2A 2016 39 1011 41 1021 STACCATO 2012 2 34 0 36 US CoreValve 2014 13 390 16 357 Outcome: early all-cause mortality
Jones et al (39) Kobrin et al (40) Latib et
al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Osnabrugge et al (13) Papadopoulos et al (44) Piazza et al (14) Santarpino et al (45) Schymik et al (15) Stöhr et al (46) Tamburino et al (16) Thakkar et al (47) Thongprayoon et al (48) Thourani et al (17) Walther et al (49) Wendt et al (50) Zweng et al (51) Random-effects model Heterogeneity: l2 = 39.3%; tau-squared = 0.1507; P = 0.017 Random-effects model Heterogeneity: l2 = 37%; tau-squared = 0.1253; P = 0.0172 Test for overall effect: P = 0.9041 Test for subgroup differences: Q = 2.2; P = 0.1415 0 20 2 20 20 1 2 3 33 3 3 21 20 2 3 12 10 9 2 287 356 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) 0.65 (0.10–4.10) 0.46 (0.11–1.98) 1.35 (0.79–2.31) 0.59 (0.14–2.53) 0.32 (0.09–1.21) 1.70 (0.82–3.51) 0.83 (0.45–1.51) 1.00 (0.13–7.60) 1.51 (0.25–9.12) 0.27 (0.14–0.52) 0.63 (0.27–1.48) 2.72 (0.69–10.63) 1.00 (0.13–7.43) 1.08 (0.84–1.38) 1.01 (0.81–1.26) 0.0 4.8 1.1 6.1 5.2 0.4 1.2 1.8 6.1 1.8 2.1 4.6 5.5 1.0 1.3 5.1 3.9 2.0 1.0 81.7 100 0 15 2 45 19 0 3 6 25 5 9 13 24 2 2 38 15 3 2 309 393 20 194 111 595 204 28 42 40 405 102 216 175 650 30 195 1077 100 62 44 5657 7579 20 194 111 1785 408 28 42 40 405 102 216 175 650 30 195 944 100 51 44 6907 8807 0.01 0.1 1 10 100 Favors TAVI Favors SAVR Knapp–Hartung random-effects OR and 95% CI for 30-day all-cause mortality stratified by study design. NOTION = Nordic Aortic Valve Intervention; OR = odds ratio; PARTNER = Placement of Aortic Transcatheter Valves; SAVR = surgical aortic valve replacement; STACCATO = A Prospective, Randomised Trial of Transapical Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Operable Elderly Patients With Aortic Stenosis; TAVI = transcatheter aortic valve implantation. * Percentages do not sum to 18.3% and 81.7% for randomized and matched studies, respectively, because of rounding. www.annals.org Annals of Internal Medicine • Vol. 165 No. 5 • 6 September 2016 337 Downloaded From: http://annals.org/ by a University of Liverpool User on 09/21/2016 Figure 1. Forest plot for early all-cause mortality in the overall population. Study (Reference) Randomized studies NOTION (9, 10) PARTNER (3–5) PARTNER 2A (11) STACCATO (26) U.S. CoreValve (6–8) Random-effects model Heterogeneity: l2 = 0%; tau-squared = 0; P = 0.4571 Matched studies Ailawadi et al (27) Appel et al (28) Biancari et al (29) Conradi et al (30) D'Onofrio et al (31) Fusari et al (33) Guarracino et al (34) Hannan et al (35) Higgins et al (36) Holzhey et al (37) Johansson et al (38) Jones et al (39) Kobrin et al (40) Latib et al (12) Minutello et al (41) Muneretto et al (42) Onorati et al (43) Events, n 3 12 39 2 13 69 34 3 10 6 2 0 3 19 6 14 4 0 20 2 20 20 1 OR (95% CI) 0.57 (0.13–2.45) 0.53 (0.26–1.10) 0.96 (0.61–1.50) 5.62 (0.26–121.32) 0.73 (0.35–1.55) 0.80 (0.51–1.25) 1.61 (0.92–2.81) 1.54 (0.24–9.66) 5.30 (1.14–24.63) 0.85 (0.27–2.63) 5.27 (0.24–113.60) 0.19 (0.01–4.06) 3.22 (0.32–32.89) 1.00 (0.52–1.92) 1.57 (0.41–6.00) 0.76 (0.36–1.58) 1.00 (0.23–4.31) 1.37 (0.68–2.77) 1.00 (0.14–7.23) 1.34 (0.79–2.30) 2.23 (1.16–4.27) 3.11 (0.12–79.64) Weight (Random), %* 1.8 4.7 6.9 0.5 4.5 18.3 5.9 1.2 1.6 2.6 0.5 0.5 0.8 5.2 2.1 4.6 1.8 0.0 4.8 1.1 6.1 5.2 0.4 Events, n 5 22 41 0 16 84 22 2 2 7 0 2 1 19 4 18 4 0 15 2 45 19 0 Total, n 139 348 1011 34 390 1922 340 45 144 82 38 30 30 405 46 167 40 20 194 111 595 204 28 Total, n 135 351 1021 36 357 1900 340 45 144 82 38 30 30 405 46 167 40 20 194 111 1785 408 28 TAVI SAVR Systematic Review and Meta-analysis of TAVI Versus SAVR REVIEW NB. 31 observational studies have been deleted from the reported forest plot Heterogeneity statistics Labelled table of raw data Effect sizes & confidence intervals Weights Pooled estimate Direction labels Nicely formatted axes Forest plot with null line
Systematic review Data extraction Software 51 packages available for meta-analysis
71 packages available for meta-analysis RevMan $$$
+ other software packages & online web calculators
* Only for preparation of Cochrane Reviews or for purely
academic use.
None
None
None
None
1 2 3 5 4 > Finish 6
None
None
None
None
None
None