Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論紹介] Fast Lexically Constrained Decoding with ...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
July 11, 2018
Research
0
380
[論紹介] Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
弊研究室で行なったNAACL読み会の発表資料です。
onizuka laboratory
July 11, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
300
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
財務諸表監査のための逐次検定
masakat0
1
250
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
130
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
LLMアプリケーションの透明性について
fufufukakaka
0
140
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
930
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
Featured
See All Featured
We Are The Robots
honzajavorek
0
170
Google's AI Overviews - The New Search
badams
0
910
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
94
Visualization
eitanlees
150
17k
How STYLIGHT went responsive
nonsquared
100
6k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
My Coaching Mixtape
mlcsv
0
49
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
71
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Transcript
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOH XJUI%ZOBNJD#FBN"MMPDBUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BUU1PTUBOE%BWJE7JMBS "NB[PO3FTFBSDI #FSMJO (FSNBOZ 1SPDPG/""$- QQ 1SFTFOUFECZ5PNPZVLJ,BKJXBSB
$POUSPMMJOH/.5PVUQVU • /.5SFNPWFTNBOZXBZTPGNBOVBMMZHVJEJOH UIFUSBOTMBUJPOQSPDFTTJOPMEFSQBSBEJHNT 1#4.5 • *ODPSQPSBUFEPNBJOTQFDJGJDEJDUJPOBSJFT • 'PSDFBUSBOTMBUJPODIPJDFGPSDFSUBJOXPSET
• -FYJDBMMZ$POTUSBJOFE%FDPEJOHGPS4FRVFODF(FOFSBUJPO 6TJOH(SJE#FBN4FBSDI )PLBNQ BOE-JV "$- • 6TFSTDBOTQFDJGZUIFXPSETUIBUNVTUBQQFBSJOUIFPVUQVU • 6TFGVMGPSUBTLTTVDIBTQPTUFEJUJOH DBQUJPOHFOFSBUJPO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V CBVFO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V FSSJDIUFO ,FJOFS IBUEJF"CTJDIU FJOF .BVFS[V CBVFO FSSJDIUFO LFJOFS -FYJDBMMZ$POTUSBJOFE%FDPEJOH /PPOFIBTUIFJOUFOUJPO PGCVJMEJOHBXBMM
(#4IBTBMBSHF3VOUJNF$PNQMFYJUZ %FDPEJOH$PNQMFYJUZ 0 /L$ (SJE#FBN4FBSDI )PLBNQ BOE-JV 0 /L
%ZOBNJD#FBN"MMPDBUJPO 5IJT8PSL /TFOUFODFMFOHUI LCFBNTJ[F $OVNCFSPGDPOTUSBJOUT (#4IBTUXPQSPCMFNT • %FDPEJOHDPNQMFYJUZJTMJOFBSJODPOTUSBJOUT • $BOOPUTQFDJGZUIFCFBNTJ[FBUNPEFMMPBEUJNF
%#"%ZOBNJD#FBN"MMPDBUJPO • 4JNQMZSFQMBDFUIF,#&45 JNQMFNFOUBUJPO GSPNUIFBMHPSJUINPGTUBOEBSECFBNEFDPEJOH • *OTUFBEPGTFMFDUJOHUIFUPQLJUFNT (FOFSBUJOHBMJTUPGDBOEJEBUFT 8FOPXOFFEUPFOTVSFUIBUDBOEJEBUFTQSPHSFTT
UISPVHIUIFTFUPGQSPWJEFEDPOTUSBJOUT "MMPDBUJOHUIFCFBNBDSPTTUIFDPOTUSBJOUCBOLT 8JUIBGJYFETJ[FECFBNBOEBSCJUSBSZOVNCFSPG DPOTUSBJOUT XFOFFEUPGJOEBOBMMPDBUJPOTUSBUFHZ GVODUJPO #&".4&"3$) / L CFBNˡ %&$0%&3*/*5 L GPS UJNFTUFQUJO/EP TDPSFT%&$0%&345&1 CFBN CFBNˡ ,#&45 TDPSFT SFUVSO CFBN<>
4UFQ(FOFSBUJOHUIFDBOEJEBUFTFU $BOEJEBUFTFU ˒ LCFTUJUFNT JF OPSNBMUPQL ˖ TJOHMFCFTUUPLFO ˠ VOGJMMFEDPOTUSBJOUT
#FBNTJ[F L 7PDBCVMBSZTJ[F c7c $POTUSBJOUT $ XPSET QISBTF
4UFQ"MMPDBUJOHUIFCFBN "MMPDBUFTJ[FLCFBNBDSPTT$ DPOTUSBJOUCBOLT #BOL 5IFQPSUJPOPGUIFCFBNSFTFSWFEGPSJUFNT IBWJOHNFUUIFTBNFOVNCFSPGDPOTUSBJOUT "MMPDBUJPOTUSBUFHZTFUUJOHFBDICJOTJ[FUP⌊L$⌋ "OZSFNBJOJOHTMPUTBSFBTTJHOFEUPUIFNPTUDPOTUSBJOFECBOL
&YQFSJNFOUBM4FUVQ • %BUB • 5SBJO8.5&OHMJTI(FSNBOUSBJOJOHDPSQPSB • %FW5FTUOFXTUFTU • 1SFQSPDFTT
• .PTFTUPLFOJ[FS • +PJOU#1&WPDBCVMBSZXJUILNFSHFPQFSBUJPO • .PEFM • MBZFS3//XJUIBUUFOUJPO • "EBNPQUJNJ[FSXJUIBCBUDITJ[FPG • &BSMZTUPQQJOH DSPTTFOUSPQZ • #BTFMJOFT • (SJE#FBN4FBSDI LC $ C
3VOOJOHUJNF MPXFSJTCFUUFS BOE#-&6TDPSF • 5IFMJOFBSUSFOEJO$ DPOTUSBJOUT JTDMFBSGPS(#4 • 5IFDPOTUBOUUSFOEJO$ JTDMFBSGPS%#"
• %#"JTBCPVUYTMPXFSUIBOVODPOTUSBJOFEEFDPEJOH #-&6 #-&6 #-&6
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO 1FBSTPO`TS
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO
.PEFMTDPSFHPFTEPXOCVU#-&6TDPSFHPFTVQ 5IJTJTBOPCTFSWBUJPOSFMBUFEUPBSFQPSU UIBU #-&6XPSTFOTJGUIFCFBNTJ[FJTNBEFUPPMBSHF ,PFIOBOE,OPXMFT 8/.5 4JY$IBMMFOHFTGPS/FVSBM.BDIJOF5SBOTMBUJPO
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOHXJUI%#"GPS/.5 • 5IJTTUVEZNBEFJUQPTTJCMFUPDPOUSPM/.5PVUQVU VTJOH-FYJDBMMZ$POTUSBJOFE%FDPEJOH • *O(#4 UIFDPNQVUBUJPOBMDPTUJODSFBTFEMJOFBSMZ XJUI DPOTUSBJOUT CVUJO%#"
JUEFDSFBTFEUPDPOTUBOU PSEFS • $POTUSBJOUTBSFDPSSFDUMZQMBDFEXPBMJHONFOUJOGPSNBUJPO