Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論紹介] Fast Lexically Constrained Decoding with ...
Search
onizuka laboratory
July 11, 2018
Research
0
380
[論紹介] Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
弊研究室で行なったNAACL読み会の発表資料です。
onizuka laboratory
July 11, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
15
8.1k
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
100
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
260
20250725-bet-ai-day
cipepser
3
550
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
620
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
210
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
330
POI: Proof of Identity
katsyoshi
0
120
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
210
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Scaling GitHub
holman
464
140k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Done Done
chrislema
186
16k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
The Language of Interfaces
destraynor
162
25k
Documentation Writing (for coders)
carmenintech
76
5.2k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOH XJUI%ZOBNJD#FBN"MMPDBUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BUU1PTUBOE%BWJE7JMBS "NB[PO3FTFBSDI #FSMJO (FSNBOZ 1SPDPG/""$- QQ 1SFTFOUFECZ5PNPZVLJ,BKJXBSB
$POUSPMMJOH/.5PVUQVU • /.5SFNPWFTNBOZXBZTPGNBOVBMMZHVJEJOH UIFUSBOTMBUJPOQSPDFTTJOPMEFSQBSBEJHNT 1#4.5 • *ODPSQPSBUFEPNBJOTQFDJGJDEJDUJPOBSJFT • 'PSDFBUSBOTMBUJPODIPJDFGPSDFSUBJOXPSET
• -FYJDBMMZ$POTUSBJOFE%FDPEJOHGPS4FRVFODF(FOFSBUJPO 6TJOH(SJE#FBN4FBSDI )PLBNQ BOE-JV "$- • 6TFSTDBOTQFDJGZUIFXPSETUIBUNVTUBQQFBSJOUIFPVUQVU • 6TFGVMGPSUBTLTTVDIBTQPTUFEJUJOH DBQUJPOHFOFSBUJPO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V CBVFO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V FSSJDIUFO ,FJOFS IBUEJF"CTJDIU FJOF .BVFS[V CBVFO FSSJDIUFO LFJOFS -FYJDBMMZ$POTUSBJOFE%FDPEJOH /PPOFIBTUIFJOUFOUJPO PGCVJMEJOHBXBMM
(#4IBTBMBSHF3VOUJNF$PNQMFYJUZ %FDPEJOH$PNQMFYJUZ 0 /L$ (SJE#FBN4FBSDI )PLBNQ BOE-JV 0 /L
%ZOBNJD#FBN"MMPDBUJPO 5IJT8PSL /TFOUFODFMFOHUI LCFBNTJ[F $OVNCFSPGDPOTUSBJOUT (#4IBTUXPQSPCMFNT • %FDPEJOHDPNQMFYJUZJTMJOFBSJODPOTUSBJOUT • $BOOPUTQFDJGZUIFCFBNTJ[FBUNPEFMMPBEUJNF
%#"%ZOBNJD#FBN"MMPDBUJPO • 4JNQMZSFQMBDFUIF,#&45 JNQMFNFOUBUJPO GSPNUIFBMHPSJUINPGTUBOEBSECFBNEFDPEJOH • *OTUFBEPGTFMFDUJOHUIFUPQLJUFNT (FOFSBUJOHBMJTUPGDBOEJEBUFT 8FOPXOFFEUPFOTVSFUIBUDBOEJEBUFTQSPHSFTT
UISPVHIUIFTFUPGQSPWJEFEDPOTUSBJOUT "MMPDBUJOHUIFCFBNBDSPTTUIFDPOTUSBJOUCBOLT 8JUIBGJYFETJ[FECFBNBOEBSCJUSBSZOVNCFSPG DPOTUSBJOUT XFOFFEUPGJOEBOBMMPDBUJPOTUSBUFHZ GVODUJPO #&".4&"3$) / L CFBNˡ %&$0%&3*/*5 L GPS UJNFTUFQUJO/EP TDPSFT%&$0%&345&1 CFBN CFBNˡ ,#&45 TDPSFT SFUVSO CFBN<>
4UFQ(FOFSBUJOHUIFDBOEJEBUFTFU $BOEJEBUFTFU ˒ LCFTUJUFNT JF OPSNBMUPQL ˖ TJOHMFCFTUUPLFO ˠ VOGJMMFEDPOTUSBJOUT
#FBNTJ[F L 7PDBCVMBSZTJ[F c7c $POTUSBJOUT $ XPSET QISBTF
4UFQ"MMPDBUJOHUIFCFBN "MMPDBUFTJ[FLCFBNBDSPTT$ DPOTUSBJOUCBOLT #BOL 5IFQPSUJPOPGUIFCFBNSFTFSWFEGPSJUFNT IBWJOHNFUUIFTBNFOVNCFSPGDPOTUSBJOUT "MMPDBUJPOTUSBUFHZTFUUJOHFBDICJOTJ[FUP⌊L$⌋ "OZSFNBJOJOHTMPUTBSFBTTJHOFEUPUIFNPTUDPOTUSBJOFECBOL
&YQFSJNFOUBM4FUVQ • %BUB • 5SBJO8.5&OHMJTI(FSNBOUSBJOJOHDPSQPSB • %FW5FTUOFXTUFTU • 1SFQSPDFTT
• .PTFTUPLFOJ[FS • +PJOU#1&WPDBCVMBSZXJUILNFSHFPQFSBUJPO • .PEFM • MBZFS3//XJUIBUUFOUJPO • "EBNPQUJNJ[FSXJUIBCBUDITJ[FPG • &BSMZTUPQQJOH DSPTTFOUSPQZ • #BTFMJOFT • (SJE#FBN4FBSDI LC $ C
3VOOJOHUJNF MPXFSJTCFUUFS BOE#-&6TDPSF • 5IFMJOFBSUSFOEJO$ DPOTUSBJOUT JTDMFBSGPS(#4 • 5IFDPOTUBOUUSFOEJO$ JTDMFBSGPS%#"
• %#"JTBCPVUYTMPXFSUIBOVODPOTUSBJOFEEFDPEJOH #-&6 #-&6 #-&6
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO 1FBSTPO`TS
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO
.PEFMTDPSFHPFTEPXOCVU#-&6TDPSFHPFTVQ 5IJTJTBOPCTFSWBUJPOSFMBUFEUPBSFQPSU UIBU #-&6XPSTFOTJGUIFCFBNTJ[FJTNBEFUPPMBSHF ,PFIOBOE,OPXMFT 8/.5 4JY$IBMMFOHFTGPS/FVSBM.BDIJOF5SBOTMBUJPO
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOHXJUI%#"GPS/.5 • 5IJTTUVEZNBEFJUQPTTJCMFUPDPOUSPM/.5PVUQVU VTJOH-FYJDBMMZ$POTUSBJOFE%FDPEJOH • *O(#4 UIFDPNQVUBUJPOBMDPTUJODSFBTFEMJOFBSMZ XJUI DPOTUSBJOUT CVUJO%#"
JUEFDSFBTFEUPDPOTUBOU PSEFS • $POTUSBJOUTBSFDPSSFDUMZQMBDFEXPBMJHONFOUJOGPSNBUJPO