Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論紹介] Fast Lexically Constrained Decoding with ...
Search
onizuka laboratory
July 11, 2018
Research
0
380
[論紹介] Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
弊研究室で行なったNAACL読み会の発表資料です。
onizuka laboratory
July 11, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
110
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
71
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
33
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
120
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
59
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
55
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
95
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
980
Cross-Media Information Spaces and Architectures
signer
PRO
0
240
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
200
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
120
数理最適化に基づく制御
mickey_kubo
6
730
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
770
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
170
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.8k
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
270
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
240
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Agile that works and the tools we love
rasmusluckow
330
21k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
GitHub's CSS Performance
jonrohan
1032
460k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Transcript
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOH XJUI%ZOBNJD#FBN"MMPDBUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BUU1PTUBOE%BWJE7JMBS "NB[PO3FTFBSDI #FSMJO (FSNBOZ 1SPDPG/""$- QQ 1SFTFOUFECZ5PNPZVLJ,BKJXBSB
$POUSPMMJOH/.5PVUQVU • /.5SFNPWFTNBOZXBZTPGNBOVBMMZHVJEJOH UIFUSBOTMBUJPOQSPDFTTJOPMEFSQBSBEJHNT 1#4.5 • *ODPSQPSBUFEPNBJOTQFDJGJDEJDUJPOBSJFT • 'PSDFBUSBOTMBUJPODIPJDFGPSDFSUBJOXPSET
• -FYJDBMMZ$POTUSBJOFE%FDPEJOHGPS4FRVFODF(FOFSBUJPO 6TJOH(SJE#FBN4FBSDI )PLBNQ BOE-JV "$- • 6TFSTDBOTQFDJGZUIFXPSETUIBUNVTUBQQFBSJOUIFPVUQVU • 6TFGVMGPSUBTLTTVDIBTQPTUFEJUJOH DBQUJPOHFOFSBUJPO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V CBVFO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V FSSJDIUFO ,FJOFS IBUEJF"CTJDIU FJOF .BVFS[V CBVFO FSSJDIUFO LFJOFS -FYJDBMMZ$POTUSBJOFE%FDPEJOH /PPOFIBTUIFJOUFOUJPO PGCVJMEJOHBXBMM
(#4IBTBMBSHF3VOUJNF$PNQMFYJUZ %FDPEJOH$PNQMFYJUZ 0 /L$ (SJE#FBN4FBSDI )PLBNQ BOE-JV 0 /L
%ZOBNJD#FBN"MMPDBUJPO 5IJT8PSL /TFOUFODFMFOHUI LCFBNTJ[F $OVNCFSPGDPOTUSBJOUT (#4IBTUXPQSPCMFNT • %FDPEJOHDPNQMFYJUZJTMJOFBSJODPOTUSBJOUT • $BOOPUTQFDJGZUIFCFBNTJ[FBUNPEFMMPBEUJNF
%#"%ZOBNJD#FBN"MMPDBUJPO • 4JNQMZSFQMBDFUIF,#&45 JNQMFNFOUBUJPO GSPNUIFBMHPSJUINPGTUBOEBSECFBNEFDPEJOH • *OTUFBEPGTFMFDUJOHUIFUPQLJUFNT (FOFSBUJOHBMJTUPGDBOEJEBUFT 8FOPXOFFEUPFOTVSFUIBUDBOEJEBUFTQSPHSFTT
UISPVHIUIFTFUPGQSPWJEFEDPOTUSBJOUT "MMPDBUJOHUIFCFBNBDSPTTUIFDPOTUSBJOUCBOLT 8JUIBGJYFETJ[FECFBNBOEBSCJUSBSZOVNCFSPG DPOTUSBJOUT XFOFFEUPGJOEBOBMMPDBUJPOTUSBUFHZ GVODUJPO #&".4&"3$) / L CFBNˡ %&$0%&3*/*5 L GPS UJNFTUFQUJO/EP TDPSFT%&$0%&345&1 CFBN CFBNˡ ,#&45 TDPSFT SFUVSO CFBN<>
4UFQ(FOFSBUJOHUIFDBOEJEBUFTFU $BOEJEBUFTFU ˒ LCFTUJUFNT JF OPSNBMUPQL ˖ TJOHMFCFTUUPLFO ˠ VOGJMMFEDPOTUSBJOUT
#FBNTJ[F L 7PDBCVMBSZTJ[F c7c $POTUSBJOUT $ XPSET QISBTF
4UFQ"MMPDBUJOHUIFCFBN "MMPDBUFTJ[FLCFBNBDSPTT$ DPOTUSBJOUCBOLT #BOL 5IFQPSUJPOPGUIFCFBNSFTFSWFEGPSJUFNT IBWJOHNFUUIFTBNFOVNCFSPGDPOTUSBJOUT "MMPDBUJPOTUSBUFHZTFUUJOHFBDICJOTJ[FUP⌊L$⌋ "OZSFNBJOJOHTMPUTBSFBTTJHOFEUPUIFNPTUDPOTUSBJOFECBOL
&YQFSJNFOUBM4FUVQ • %BUB • 5SBJO8.5&OHMJTI(FSNBOUSBJOJOHDPSQPSB • %FW5FTUOFXTUFTU • 1SFQSPDFTT
• .PTFTUPLFOJ[FS • +PJOU#1&WPDBCVMBSZXJUILNFSHFPQFSBUJPO • .PEFM • MBZFS3//XJUIBUUFOUJPO • "EBNPQUJNJ[FSXJUIBCBUDITJ[FPG • &BSMZTUPQQJOH DSPTTFOUSPQZ • #BTFMJOFT • (SJE#FBN4FBSDI LC $ C
3VOOJOHUJNF MPXFSJTCFUUFS BOE#-&6TDPSF • 5IFMJOFBSUSFOEJO$ DPOTUSBJOUT JTDMFBSGPS(#4 • 5IFDPOTUBOUUSFOEJO$ JTDMFBSGPS%#"
• %#"JTBCPVUYTMPXFSUIBOVODPOTUSBJOFEEFDPEJOH #-&6 #-&6 #-&6
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO 1FBSTPO`TS
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO
.PEFMTDPSFHPFTEPXOCVU#-&6TDPSFHPFTVQ 5IJTJTBOPCTFSWBUJPOSFMBUFEUPBSFQPSU UIBU #-&6XPSTFOTJGUIFCFBNTJ[FJTNBEFUPPMBSHF ,PFIOBOE,OPXMFT 8/.5 4JY$IBMMFOHFTGPS/FVSBM.BDIJOF5SBOTMBUJPO
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOHXJUI%#"GPS/.5 • 5IJTTUVEZNBEFJUQPTTJCMFUPDPOUSPM/.5PVUQVU VTJOH-FYJDBMMZ$POTUSBJOFE%FDPEJOH • *O(#4 UIFDPNQVUBUJPOBMDPTUJODSFBTFEMJOFBSMZ XJUI DPOTUSBJOUT CVUJO%#"
JUEFDSFBTFEUPDPOTUBOU PSEFS • $POTUSBJOUTBSFDPSSFDUMZQMBDFEXPBMJHONFOUJOGPSNBUJPO