Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論紹介] Fast Lexically Constrained Decoding with ...
Search
onizuka laboratory
July 11, 2018
Research
0
380
[論紹介] Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
弊研究室で行なったNAACL読み会の発表資料です。
onizuka laboratory
July 11, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
Ankylosing Spondylitis
ankh2054
0
110
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
Featured
See All Featured
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
First, design no harm
axbom
PRO
2
1.1k
Designing for Performance
lara
610
70k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Navigating Weather and Climate Data
rabernat
0
110
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
A better future with KSS
kneath
240
18k
Ethics towards AI in product and experience design
skipperchong
2
200
Transcript
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOH XJUI%ZOBNJD#FBN"MMPDBUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BUU1PTUBOE%BWJE7JMBS "NB[PO3FTFBSDI #FSMJO (FSNBOZ 1SPDPG/""$- QQ 1SFTFOUFECZ5PNPZVLJ,BKJXBSB
$POUSPMMJOH/.5PVUQVU • /.5SFNPWFTNBOZXBZTPGNBOVBMMZHVJEJOH UIFUSBOTMBUJPOQSPDFTTJOPMEFSQBSBEJHNT 1#4.5 • *ODPSQPSBUFEPNBJOTQFDJGJDEJDUJPOBSJFT • 'PSDFBUSBOTMBUJPODIPJDFGPSDFSUBJOXPSET
• -FYJDBMMZ$POTUSBJOFE%FDPEJOHGPS4FRVFODF(FOFSBUJPO 6TJOH(SJE#FBN4FBSDI )PLBNQ BOE-JV "$- • 6TFSTDBOTQFDJGZUIFXPSETUIBUNVTUBQQFBSJOUIFPVUQVU • 6TFGVMGPSUBTLTTVDIBTQPTUFEJUJOH DBQUJPOHFOFSBUJPO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V CBVFO /JFNBOE IBUEJF"CTJDIU FJOF .BVFS[V FSSJDIUFO ,FJOFS IBUEJF"CTJDIU FJOF .BVFS[V CBVFO FSSJDIUFO LFJOFS -FYJDBMMZ$POTUSBJOFE%FDPEJOH /PPOFIBTUIFJOUFOUJPO PGCVJMEJOHBXBMM
(#4IBTBMBSHF3VOUJNF$PNQMFYJUZ %FDPEJOH$PNQMFYJUZ 0 /L$ (SJE#FBN4FBSDI )PLBNQ BOE-JV 0 /L
%ZOBNJD#FBN"MMPDBUJPO 5IJT8PSL /TFOUFODFMFOHUI LCFBNTJ[F $OVNCFSPGDPOTUSBJOUT (#4IBTUXPQSPCMFNT • %FDPEJOHDPNQMFYJUZJTMJOFBSJODPOTUSBJOUT • $BOOPUTQFDJGZUIFCFBNTJ[FBUNPEFMMPBEUJNF
%#"%ZOBNJD#FBN"MMPDBUJPO • 4JNQMZSFQMBDFUIF,#&45 JNQMFNFOUBUJPO GSPNUIFBMHPSJUINPGTUBOEBSECFBNEFDPEJOH • *OTUFBEPGTFMFDUJOHUIFUPQLJUFNT (FOFSBUJOHBMJTUPGDBOEJEBUFT 8FOPXOFFEUPFOTVSFUIBUDBOEJEBUFTQSPHSFTT
UISPVHIUIFTFUPGQSPWJEFEDPOTUSBJOUT "MMPDBUJOHUIFCFBNBDSPTTUIFDPOTUSBJOUCBOLT 8JUIBGJYFETJ[FECFBNBOEBSCJUSBSZOVNCFSPG DPOTUSBJOUT XFOFFEUPGJOEBOBMMPDBUJPOTUSBUFHZ GVODUJPO #&".4&"3$) / L CFBNˡ %&$0%&3*/*5 L GPS UJNFTUFQUJO/EP TDPSFT%&$0%&345&1 CFBN CFBNˡ ,#&45 TDPSFT SFUVSO CFBN<>
4UFQ(FOFSBUJOHUIFDBOEJEBUFTFU $BOEJEBUFTFU ˒ LCFTUJUFNT JF OPSNBMUPQL ˖ TJOHMFCFTUUPLFO ˠ VOGJMMFEDPOTUSBJOUT
#FBNTJ[F L 7PDBCVMBSZTJ[F c7c $POTUSBJOUT $ XPSET QISBTF
4UFQ"MMPDBUJOHUIFCFBN "MMPDBUFTJ[FLCFBNBDSPTT$ DPOTUSBJOUCBOLT #BOL 5IFQPSUJPOPGUIFCFBNSFTFSWFEGPSJUFNT IBWJOHNFUUIFTBNFOVNCFSPGDPOTUSBJOUT "MMPDBUJPOTUSBUFHZTFUUJOHFBDICJOTJ[FUP⌊L$⌋ "OZSFNBJOJOHTMPUTBSFBTTJHOFEUPUIFNPTUDPOTUSBJOFECBOL
&YQFSJNFOUBM4FUVQ • %BUB • 5SBJO8.5&OHMJTI(FSNBOUSBJOJOHDPSQPSB • %FW5FTUOFXTUFTU • 1SFQSPDFTT
• .PTFTUPLFOJ[FS • +PJOU#1&WPDBCVMBSZXJUILNFSHFPQFSBUJPO • .PEFM • MBZFS3//XJUIBUUFOUJPO • "EBNPQUJNJ[FSXJUIBCBUDITJ[FPG • &BSMZTUPQQJOH DSPTTFOUSPQZ • #BTFMJOFT • (SJE#FBN4FBSDI LC $ C
3VOOJOHUJNF MPXFSJTCFUUFS BOE#-&6TDPSF • 5IFMJOFBSUSFOEJO$ DPOTUSBJOUT JTDMFBSGPS(#4 • 5IFDPOTUBOUUSFOEJO$ JTDMFBSGPS%#"
• %#"JTBCPVUYTMPXFSUIBOVODPOTUSBJOFEEFDPEJOH #-&6 #-&6 #-&6
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO 1FBSTPO`TS
$POTUSBJOFEXPSETBSFQMBDFEJOUIFDPSSFDUQPTJUJPO
.PEFMTDPSFHPFTEPXOCVU#-&6TDPSFHPFTVQ 5IJTJTBOPCTFSWBUJPOSFMBUFEUPBSFQPSU UIBU #-&6XPSTFOTJGUIFCFBNTJ[FJTNBEFUPPMBSHF ,PFIOBOE,OPXMFT 8/.5 4JY$IBMMFOHFTGPS/FVSBM.BDIJOF5SBOTMBUJPO
'BTU-FYJDBMMZ$POTUSBJOFE%FDPEJOHXJUI%#"GPS/.5 • 5IJTTUVEZNBEFJUQPTTJCMFUPDPOUSPM/.5PVUQVU VTJOH-FYJDBMMZ$POTUSBJOFE%FDPEJOH • *O(#4 UIFDPNQVUBUJPOBMDPTUJODSFBTFEMJOFBSMZ XJUI DPOTUSBJOUT CVUJO%#"
JUEFDSFBTFEUPDPOTUBOU PSEFS • $POTUSBJOUTBSFDPSSFDUMZQMBDFEXPBMJHONFOUJOGPSNBUJPO