Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150312 発表資料
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuta
March 11, 2015
Education
0
150
20150312 発表資料
Yuta
March 11, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
180
NLP2016 報告
sudo
0
200
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
270
20150909 発表資料
sudo
0
150
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
200
20150512 文献紹介
sudo
0
190
Other Decks in Education
See All in Education
LotusScript でエージェント情報を出力してみた
harunakano
0
120
おひとり様Organizations管理者もルートアクセス管理を有効にしよう!
amarelo_n24
1
100
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
Adobe Express
matleenalaakso
2
8.1k
都市の形成要因と 「都市の余白」のあり方
sakamon
0
160
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.6k
Leveraging LLMs for student feedback in introductory data science courses (Stats Up AI)
minecr
1
170
多様なメンター、多様な基準
yasulab
PRO
5
19k
Microsoft Office 365
matleenalaakso
0
2.1k
AIで日本はどう進化する? 〜キミが生きる2035年の地図〜
behomazn
0
120
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
220
Chapitre_2_-_Partie_2.pdf
bernhardsvt
0
170
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
96
14k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Visualization
eitanlees
150
17k
My Coaching Mixtape
mlcsv
0
48
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
51
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Transcript
情報抽出 2 自然言語処理研究室 B3 須戸悠太 1
情報抽出とは(復習) • テキストから指定された情報を抽出する。 • 例:私は昨日、遊園地へ行った。 ▫ 誰が →「私」 ▫ いつ
→「昨日」 ▫ どこへ→「遊園地」 2
処理の流れ 3 テ キ ス ト 形 態 素 解
析 固 有 名 抽 出 構 文 解 析 属 性 ・ 関 係 抽 出 シ ナ リ オ の 認 識 照 応 解 析 推 論 抽 出 さ れ た テ ン プ レ ー ト
例文 • サムは、有名なホットドッグ製造業者であるA 社の副社長を退役しました。 • 彼の後は、ハリーが継ぎます。 4
テンプレート 5 出来事 退役 人物 サム 役職 副社長 会社 A社
出来事 就役 人物 ハリー 役職 副社長 会社 A社
固有名抽出 • [人名 サム] は、有名なホットドッグ製造業者 である[会社名 A社] の副社長を退役しました。 • 彼の後は、[人名
ハリー] が継ぎます。 • 固有名のタイプがラベルづけされる 6
構文解析 • [np:e1 サム] は、[np:e2 有名なホットドッグ 製造業者] である [np:e3 A社]
の [np:e4 副社長]を [vg 退役しました。] • [np:e5 彼] の後は、[np:e6 ハリー] が [vg 継ぎます。] • 名詞句:np 動詞:vg • 名詞句にID (e1~e6) を付与 7
実体(entity)に関する情報 • entity e1 人名:サム • entity e2 製造業者 •
entity e3 会社名:A社 • entity e4 役職:副社長 • entity e5 人間 • entity e6 人名:ハリー 8
関係抽出 • 抽出された実体の関係を解析 • entity e1 人名:サム • entity e2
製造業者 名前:A社 • entity e4 役職:副社長 会社:e2 • entity e5 人間 • entity e6 人名:ハリー 9
シナリオの認識 • [人] が[役職] を退役する • [人a] が[人b] の後を継ぐ •
event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e5 • e5→「彼」:人間という情報のみ 10
照応解析 • e5→「彼」:人間という情報のみ • これより前にタイプが人間である固有名詞は 「サム」のみであり指示対象はe1となる 11
ここまでの結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 12
ここまでの結果から • e7から上のテンプレート(退役)が得られる • e8は人間の間の「引き継ぎ」についての記述で あり、「就役」については記述されていない 13
テンプレート 14 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 ? 役職 ? 会社 ?
推論 • 抽出された情報とトピックに関する知識を組み 合わせて新たな情報を導く • 例 • 退役(X-人 , Y-職)
^ 相続(Z-人 , X-人) ▫ →就役(Z-人 , Y-職) • 就役(X-人 , Y-職) ^ 相続(X-人 , Z-人) ▫ →退役(Z-人 , Y-職) 15
推論までで得られた結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 • event e9 就役 [人]:e6 [役職]:e4 16
推論から • e9は下のテンプレート(就役)が得られ、テンプ レート内の全ての情報が抽出された 17
テンプレート 18 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 e6→ハリー 役職 e4→副社長 会社 e2→A社