Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150312 発表資料
Search
Yuta
March 11, 2015
Education
0
150
20150312 発表資料
Yuta
March 11, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
170
NLP2016 報告
sudo
0
190
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
260
20150909 発表資料
sudo
0
140
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
190
20150512 文献紹介
sudo
0
180
Other Decks in Education
See All in Education
OpenSourceSummitJapanを運営してみた話
kujiraitakahiro
0
720
Linuxのよく使うコマンドを解説
mickey_kubo
1
150
プレゼンテーション実践
takenawa
0
6.6k
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
320
著作権と授業に関する出前講習会/dme-2025-05-01
gnutar
0
200
AIの時代こそ、考える知的学習術
yum3
2
170
SkimaTalk Tutorial for Students
skimatalk
0
1.8k
ビジネスモデル理解
takenawa
0
6.7k
i-GIP 2025 中高生のみなさんへ資料
202200
0
500
Pydantic(AI)とJSONの詳細解説
mickey_kubo
0
120
Pythonパッケージ管理 [uv] 完全入門
mickey_kubo
20
15k
Data Management and Analytics Specialisation
signer
PRO
0
1.4k
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
How STYLIGHT went responsive
nonsquared
100
5.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
970
Designing for humans not robots
tammielis
253
25k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Code Review Best Practice
trishagee
69
19k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
4 Signs Your Business is Dying
shpigford
184
22k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Transcript
情報抽出 2 自然言語処理研究室 B3 須戸悠太 1
情報抽出とは(復習) • テキストから指定された情報を抽出する。 • 例:私は昨日、遊園地へ行った。 ▫ 誰が →「私」 ▫ いつ
→「昨日」 ▫ どこへ→「遊園地」 2
処理の流れ 3 テ キ ス ト 形 態 素 解
析 固 有 名 抽 出 構 文 解 析 属 性 ・ 関 係 抽 出 シ ナ リ オ の 認 識 照 応 解 析 推 論 抽 出 さ れ た テ ン プ レ ー ト
例文 • サムは、有名なホットドッグ製造業者であるA 社の副社長を退役しました。 • 彼の後は、ハリーが継ぎます。 4
テンプレート 5 出来事 退役 人物 サム 役職 副社長 会社 A社
出来事 就役 人物 ハリー 役職 副社長 会社 A社
固有名抽出 • [人名 サム] は、有名なホットドッグ製造業者 である[会社名 A社] の副社長を退役しました。 • 彼の後は、[人名
ハリー] が継ぎます。 • 固有名のタイプがラベルづけされる 6
構文解析 • [np:e1 サム] は、[np:e2 有名なホットドッグ 製造業者] である [np:e3 A社]
の [np:e4 副社長]を [vg 退役しました。] • [np:e5 彼] の後は、[np:e6 ハリー] が [vg 継ぎます。] • 名詞句:np 動詞:vg • 名詞句にID (e1~e6) を付与 7
実体(entity)に関する情報 • entity e1 人名:サム • entity e2 製造業者 •
entity e3 会社名:A社 • entity e4 役職:副社長 • entity e5 人間 • entity e6 人名:ハリー 8
関係抽出 • 抽出された実体の関係を解析 • entity e1 人名:サム • entity e2
製造業者 名前:A社 • entity e4 役職:副社長 会社:e2 • entity e5 人間 • entity e6 人名:ハリー 9
シナリオの認識 • [人] が[役職] を退役する • [人a] が[人b] の後を継ぐ •
event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e5 • e5→「彼」:人間という情報のみ 10
照応解析 • e5→「彼」:人間という情報のみ • これより前にタイプが人間である固有名詞は 「サム」のみであり指示対象はe1となる 11
ここまでの結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 12
ここまでの結果から • e7から上のテンプレート(退役)が得られる • e8は人間の間の「引き継ぎ」についての記述で あり、「就役」については記述されていない 13
テンプレート 14 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 ? 役職 ? 会社 ?
推論 • 抽出された情報とトピックに関する知識を組み 合わせて新たな情報を導く • 例 • 退役(X-人 , Y-職)
^ 相続(Z-人 , X-人) ▫ →就役(Z-人 , Y-職) • 就役(X-人 , Y-職) ^ 相続(X-人 , Z-人) ▫ →退役(Z-人 , Y-職) 15
推論までで得られた結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 • event e9 就役 [人]:e6 [役職]:e4 16
推論から • e9は下のテンプレート(就役)が得られ、テンプ レート内の全ての情報が抽出された 17
テンプレート 18 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 e6→ハリー 役職 e4→副社長 会社 e2→A社