Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150312 発表資料
Search
Yuta
March 11, 2015
Education
0
150
20150312 発表資料
Yuta
March 11, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
170
NLP2016 報告
sudo
0
190
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
260
20150909 発表資料
sudo
0
140
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
190
20150512 文献紹介
sudo
0
180
Other Decks in Education
See All in Education
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
170
RSJ2025 ランチョンセミナー 一歩ずつ世界へ:学生・若手研究者のための等身大の国際化の始め方
t_inamura
0
280
大学院進学について(2025年度版)
imash
0
120
Présentation_1ère_Spé_2025.pdf
bernhardsvt
0
220
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
210
20250807_がんばらないコミュニティ運営
ponponmikankan
0
160
2025年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2025. 6. 26)
akiraasano
PRO
0
160
フィードバックの伝え方、受け身のココロ / The Way of Feedback: Words and the Receiving Heart
spring_aki
1
140
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
220
核燃料政策を問う─英国の決断と日本
hide2kano
0
180
ARアプリを活用した防災まち歩きデータ作成ハンズオン
nro2daisuke
0
180
Ch1_-_Partie_1.pdf
bernhardsvt
0
220
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Statistics for Hackers
jakevdp
799
220k
A designer walks into a library…
pauljervisheath
207
24k
How to Ace a Technical Interview
jacobian
279
23k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Being A Developer After 40
akosma
90
590k
Site-Speed That Sticks
csswizardry
10
820
Transcript
情報抽出 2 自然言語処理研究室 B3 須戸悠太 1
情報抽出とは(復習) • テキストから指定された情報を抽出する。 • 例:私は昨日、遊園地へ行った。 ▫ 誰が →「私」 ▫ いつ
→「昨日」 ▫ どこへ→「遊園地」 2
処理の流れ 3 テ キ ス ト 形 態 素 解
析 固 有 名 抽 出 構 文 解 析 属 性 ・ 関 係 抽 出 シ ナ リ オ の 認 識 照 応 解 析 推 論 抽 出 さ れ た テ ン プ レ ー ト
例文 • サムは、有名なホットドッグ製造業者であるA 社の副社長を退役しました。 • 彼の後は、ハリーが継ぎます。 4
テンプレート 5 出来事 退役 人物 サム 役職 副社長 会社 A社
出来事 就役 人物 ハリー 役職 副社長 会社 A社
固有名抽出 • [人名 サム] は、有名なホットドッグ製造業者 である[会社名 A社] の副社長を退役しました。 • 彼の後は、[人名
ハリー] が継ぎます。 • 固有名のタイプがラベルづけされる 6
構文解析 • [np:e1 サム] は、[np:e2 有名なホットドッグ 製造業者] である [np:e3 A社]
の [np:e4 副社長]を [vg 退役しました。] • [np:e5 彼] の後は、[np:e6 ハリー] が [vg 継ぎます。] • 名詞句:np 動詞:vg • 名詞句にID (e1~e6) を付与 7
実体(entity)に関する情報 • entity e1 人名:サム • entity e2 製造業者 •
entity e3 会社名:A社 • entity e4 役職:副社長 • entity e5 人間 • entity e6 人名:ハリー 8
関係抽出 • 抽出された実体の関係を解析 • entity e1 人名:サム • entity e2
製造業者 名前:A社 • entity e4 役職:副社長 会社:e2 • entity e5 人間 • entity e6 人名:ハリー 9
シナリオの認識 • [人] が[役職] を退役する • [人a] が[人b] の後を継ぐ •
event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e5 • e5→「彼」:人間という情報のみ 10
照応解析 • e5→「彼」:人間という情報のみ • これより前にタイプが人間である固有名詞は 「サム」のみであり指示対象はe1となる 11
ここまでの結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 12
ここまでの結果から • e7から上のテンプレート(退役)が得られる • e8は人間の間の「引き継ぎ」についての記述で あり、「就役」については記述されていない 13
テンプレート 14 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 ? 役職 ? 会社 ?
推論 • 抽出された情報とトピックに関する知識を組み 合わせて新たな情報を導く • 例 • 退役(X-人 , Y-職)
^ 相続(Z-人 , X-人) ▫ →就役(Z-人 , Y-職) • 就役(X-人 , Y-職) ^ 相続(X-人 , Z-人) ▫ →退役(Z-人 , Y-職) 15
推論までで得られた結果 • entity e1 人名:サム • entity e2 製造業者 名前:A社
• entity e4 役職:副社長 会社:e2 • entity e6 人名:ハリー • event e7 退役 [人]:e1 [役職]:e4 • event e8 相続 [人a]:e6 [人b]:e1 • event e9 就役 [人]:e6 [役職]:e4 16
推論から • e9は下のテンプレート(就役)が得られ、テンプ レート内の全ての情報が抽出された 17
テンプレート 18 出来事 退役 人物 e1→サム 役職 e4→副社長 会社 e2→A社
出来事 就役 人物 e6→ハリー 役職 e4→副社長 会社 e2→A社