Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介20181126_Learning and Evaluating Interpreta...
Search
T.Tada
November 26, 2018
Technology
0
66
文献紹介20181126_Learning and Evaluating Interpretable Sentence Embeddings
T.Tada
November 26, 2018
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
tad
0
62
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
tad
0
160
文献紹介_201912_Publicly Available Clinical BERT Embeddings
tad
0
160
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
tad
0
220
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
150
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
64
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
tad
0
98
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
Other Decks in Technology
See All in Technology
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
0
230
OpenCensusと歩んだ7年間
bgpat
0
310
パフォーマンスチューニングのために普段からできること/Performance Tuning: Daily Practices
fujiwara3
2
180
어떤 개발자가 되고 싶은가?
arawn
1
380
実践マルチモーダル検索!
shibuiwilliam
3
520
データとAIで明らかになる、私たちの課題 ~Snowflake MCP,Salesforce MCPに触れて~ / Data and AI Insights
kaonavi
0
230
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.7k
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
830
InsightX 会社説明資料/ Company deck
insightx
0
180
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
290
ストレージエンジニアの仕事と、近年の計算機について / 第58回 情報科学若手の会
pfn
PRO
4
950
新米エンジニアをTech Leadに任命する ー 成長を支える挑戦的な人と組織のマネジメント
naopr
1
340
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Cult of Friendly URLs
andyhume
79
6.6k
Code Reviewing Like a Champion
maltzj
526
40k
Embracing the Ebb and Flow
colly
88
4.9k
Writing Fast Ruby
sferik
630
62k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Into the Great Unknown - MozCon
thekraken
40
2.1k
GraphQLとの向き合い方2022年版
quramy
49
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
The Language of Interfaces
destraynor
162
25k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Transcript
- 文献紹介 2018/11/26 - Learning and Evaluating Sparse Interpretable Sentence
Embeddings 長岡技術科学大学 自然言語処理研究室 多田太郎
About the thesis Authors : Valentin Trifonov, Octavian-Eugen Ganea, Anna
Potapenko*, Thomas Hofmann ETH Zurich, Switzerland, National Research University Higher School of Economics, Russia* Conference : Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 200–210 2
Abstract ・sentence embedding を解釈したい ・ベクトルをスパースにする手法と可読性の評価手法を提案 ・密なベクトルより解釈性が増加 3
Introduction 解釈性とスパースな表現には関連性がある (Murphy et al. : 2012) ベクトルのスパース化には2つの手法がある ・ベクトルを生成し、後処理 ・ベクトル生成時にスパースなものとする
4
Models スタンダードなseq2seqに基づき以下に取り組む 1. Enforcing Sparsity by Post-Processing Dense Embeddings 2.
Enforcing Sparsity during Embedding Learning ・k-Sparse ・Sparsemax 5
Models 1. Enforcing Sparsity by Post-Processing Dense Embeddings Eは2000次元のsparseなベクトルとなる 6
Models 2. Enforcing Sparsity during Embedding Learning スパース化layerでdenseなベクトルZをsparseなベクトル Eに変換するように学習 ・k-Sparse
0でない次元数kを固定したスパース表現 ・Sparsemax softmaxの応用,このsparseな確率分布を利用 上記kを固定しないため、各文に対して柔軟 7
Experiments 1. Training Details ボキャブラリサイズ:20,000 word embeddings : 100 次元
GRU(Cho et al. : 2014)を使用 入力と同じ文字列が出力される様に学習 2. Data ・the Cornell Movie-Dialogs Corpus: 500,000サンプル (バリデーションとテストに50,000サンプルずつ) ・The MS COCO: 600,000サンプル 8
A Quantitative and Automated Evaluation Metric 9 トピック内の単語対の平均単語距離を利用. Topic coherence
:自動評価手法(Newman et al. 2010) をベースとする トピック内の単語ではなく,文ベクトル内の次元でランキングし、上位を使用. 合わせて全非0次元を考慮した場合の比較として、ランダムな選定でも実験.
A Quantitative and Automated Evaluation Metric 類似度計算の手法 10 1. Jaccard
Similarity 2. BoW Similarity 3. WMD Similarity The Word Mover’s Distance(Kusner et al. 2015) Word2Vevを利用したdocument distance measure
Results 1. Reconstruction Quality スパースになるにつれて結果が悪くなる 文法と関連したトピックというの面では上手く生成できている 11
Results 2. Highest-Ranked Samples 各ベクトルで上位となった値を使用 12
Results 3. Quantitative Evaluation 13
Results 4. Downstream Tasks SentEval framework (Conneau et al. :
2018)のMovie-Dialogsのみを用い実験 14
Discussion ・いい解釈性は取れたが,文の再構築では高いエラー ・スパース性が高いと 各文書の共通的な要素は得られるが,特徴的な情報が落ちてしまう ・分類タスクへの応用では性能が悪化 ・後処理とモデル内でのスパース化では,モデル内での処理の方が若干性能が良さそう スパースlayerで情報が落ち,高いLoss値となった モデルが複雑となるため,トレードオフな関係の様 Sparsemaxでスパース性kを固定しなくて良り,文の特徴に対して柔軟となった 15
Conclusion ・NNの中間表現は基本的に理解できないが,解釈性を得る事は重要 ・スパース化により情報が落ち,タスクでの精度は悪化 ・本論文のスパース化で文ベクトルの解釈性は増した ・評価手法では人間の直感的な理解に沿ったスコアになっている 他の類似度計算手法を用いることも出来,リーズナブル ・DLモデルを理解するヒントとなる可能性 16