Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
tosho
December 10, 2018
Research
0
350
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
tosho
December 10, 2018
Tweet
Share
More Decks by tosho
See All by tosho
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
tosho
0
310
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
tosho
0
370
Shaham and Levy, 2021. Neural Machine Translation without Embeddings. NAACL2021
tosho
0
130
Liu et al., 2021. Pay Attention to MLPs. arXiv
tosho
0
180
Huang et al. 2020 Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting
tosho
0
490
Ive, Madhyastha, Specia_2019_EMNLP_Deep Copycat Networks for Text-to-Text Generation
tosho
0
160
Tan, Bansal_2019_EMNLP_LXMERT Learning Cross-Modality Encoder Representations from Transformers
tosho
0
250
Tsai et al._2019_ACL_Multimodal Transformer for Unaligned Multimodal Language Sequences
tosho
0
410
Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL
tosho
3
310
Other Decks in Research
See All in Research
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
290
20年前に50代だった人たちの今
hysmrk
0
140
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
510
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Remote sensing × Multi-modal meta survey
satai
4
710
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
390
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
300
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
490
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
247
13k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
68
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
How STYLIGHT went responsive
nonsquared
100
6k
Thoughts on Productivity
jonyablonski
74
5k
Raft: Consensus for Rubyists
vanstee
141
7.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
Rails Girls Zürich Keynote
gr2m
96
14k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Technical Leadership for Architectural Decision Making
baasie
2
250
Marketing to machines
jonoalderson
1
4.7k
Transcript
MultiWOZ – A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modeling Tosho Hirasawa
0. Overview • -6<+?E$> • 4L3I/%) H2 • :@Multi-Domain
Wizard-of-Oz (MultiWOZ) • KJ • ("*72 GA/9F8 #!= 5 ,1 • 0.BD&* ' &(*;C
1. Introduction • Conversational Artificial Intelligence • human-level *)&($ •
#%' ! • Seneff and Polifroni, 2000 • "Raux et al., 2005 • Amazon AlexaRam et al., 2018
1. Introduction • \T@F [C0*%0# RA •
2DKU • =W:J • ?6) 8V • OXN3A • PH517 E2E ,"/LI • <];Z17MYB( >E • &!-0Q • " 9 • [C$+0_4D • GS5'.-0^
1. Introduction , , 2017
2. Related Works • >K&.(%3/9 ! • Machine-to-Machine • *5/4+"O6K"R
• HLJ-$) T DM6K\E ]X • Human-to-Machine • 7:=@^Y'(*0UZ9";I • G OE! :B • HLJ^Y'(*0 YS?,1$5&.(NI • Human-to-Human • G<QW &(+< • Twitter, Reddit, Ubuntu 6K"_8NI! • HLJ6KC[ AP#-*'25 FV
3. Data Collection Set-up • Wizard-of-Oz E4 • Dialogue Task:
• *,-@ ontology random sampling !'#%"8(6 • User Side: • (6=1 97CF.;A • System (Wizard) Side: • $ 2: 97/D • Wizard/User (6>, (6JG+ • (6)I30< • (6H5&?B)I30
3. Data Collection Set-up • Annotation of Dialogue Acts •
Dialogue Act = intent + slot-value pairs • intent: inform / request • slot-value: domain, price, … • Amazon Mechanical Turk +!" &$ dialogue acts .) • !" &$ '- /( • % ,*0.8843#0
4. MultiWOZ Dialogue Corpus •
: domain
4. MultiWOZ Dialogue Corpus : expensive : domain
4. MultiWOZ Dialogue Corpus • (turns in a
dialogue) • 8.93 (single-domain), 15.39 (multi-domain) • 115,434 turns • >70% 10 turns • (sentence length) • 11.75 (user), 15.12 (wizard)
4. MultiWOZ Dialogue Corpus • Dialogue Acts • 60% turns
action • %# • "$ • %# !"$
4. MultiWOZ Dialogue Corpus • •
• Multi-Domain, Dialogue Act
5. MultiWOZ as a New Benchmark • Dialogue modelling task
• Dialogue State Tracking • (,# '/ • &,.5-0)1 ontology • Dialogue-Context-to-Text Generation • (,Dialogue State, # '/ • &,!16 • Cam676/MultiWOZ 28 • % $"+* • RNN 473 • Cam676: GRU • MultiWOZ: LSTM
5. MultiWOZ as a New Benchmark • Dialogue-Act-to-Text Generation •
Structured meaning representation (Dialogue Act?) • • Semantically Conditioned LSTM (Wen+, 2015) • SFX MultiWOZ restaurant • SER = (missing slots + redundant slots) / total slots Wen+, 2015
6. Conclusion • )1"&7* 8 E2E #$20
• Modular-based (+%' • MultiWOZ 3 46 • !-53. github /,