Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A...
Search
tosho
December 10, 2018
Research
0
310
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
tosho
December 10, 2018
Tweet
Share
More Decks by tosho
See All by tosho
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
tosho
0
270
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
tosho
0
310
Shaham and Levy, 2021. Neural Machine Translation without Embeddings. NAACL2021
tosho
0
88
Liu et al., 2021. Pay Attention to MLPs. arXiv
tosho
0
130
Huang et al. 2020 Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting
tosho
0
390
Ive, Madhyastha, Specia_2019_EMNLP_Deep Copycat Networks for Text-to-Text Generation
tosho
0
95
Tan, Bansal_2019_EMNLP_LXMERT Learning Cross-Modality Encoder Representations from Transformers
tosho
0
180
Tsai et al._2019_ACL_Multimodal Transformer for Unaligned Multimodal Language Sequences
tosho
0
300
Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL
tosho
3
230
Other Decks in Research
See All in Research
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
140
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
530
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
210
「並列化時代の乱数生成」
abap34
3
910
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
200
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
920
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
120
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3k
最近のVisual Odometryと Depth Estimation
sgk
1
320
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
182
21k
GitHub's CSS Performance
jonrohan
1031
460k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
530
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Fireside Chat
paigeccino
34
3.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
For a Future-Friendly Web
brad_frost
175
9.4k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
450
Transcript
MultiWOZ – A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modeling Tosho Hirasawa
0. Overview • -6<+?E$> • 4L3I/%) H2 • :@Multi-Domain
Wizard-of-Oz (MultiWOZ) • KJ • ("*72 GA/9F8 #!= 5 ,1 • 0.BD&* ' &(*;C
1. Introduction • Conversational Artificial Intelligence • human-level *)&($ •
#%' ! • Seneff and Polifroni, 2000 • "Raux et al., 2005 • Amazon AlexaRam et al., 2018
1. Introduction • \T@F [C0*%0# RA •
2DKU • =W:J • ?6) 8V • OXN3A • PH517 E2E ,"/LI • <];Z17MYB( >E • &!-0Q • " 9 • [C$+0_4D • GS5'.-0^
1. Introduction , , 2017
2. Related Works • >K&.(%3/9 ! • Machine-to-Machine • *5/4+"O6K"R
• HLJ-$) T DM6K\E ]X • Human-to-Machine • 7:=@^Y'(*0UZ9";I • G OE! :B • HLJ^Y'(*0 YS?,1$5&.(NI • Human-to-Human • G<QW &(+< • Twitter, Reddit, Ubuntu 6K"_8NI! • HLJ6KC[ AP#-*'25 FV
3. Data Collection Set-up • Wizard-of-Oz E4 • Dialogue Task:
• *,-@ ontology random sampling !'#%"8(6 • User Side: • (6=1 97CF.;A • System (Wizard) Side: • $ 2: 97/D • Wizard/User (6>, (6JG+ • (6)I30< • (6H5&?B)I30
3. Data Collection Set-up • Annotation of Dialogue Acts •
Dialogue Act = intent + slot-value pairs • intent: inform / request • slot-value: domain, price, … • Amazon Mechanical Turk +!" &$ dialogue acts .) • !" &$ '- /( • % ,*0.8843#0
4. MultiWOZ Dialogue Corpus •
: domain
4. MultiWOZ Dialogue Corpus : expensive : domain
4. MultiWOZ Dialogue Corpus • (turns in a
dialogue) • 8.93 (single-domain), 15.39 (multi-domain) • 115,434 turns • >70% 10 turns • (sentence length) • 11.75 (user), 15.12 (wizard)
4. MultiWOZ Dialogue Corpus • Dialogue Acts • 60% turns
action • %# • "$ • %# !"$
4. MultiWOZ Dialogue Corpus • •
• Multi-Domain, Dialogue Act
5. MultiWOZ as a New Benchmark • Dialogue modelling task
• Dialogue State Tracking • (,# '/ • &,.5-0)1 ontology • Dialogue-Context-to-Text Generation • (,Dialogue State, # '/ • &,!16 • Cam676/MultiWOZ 28 • % $"+* • RNN 473 • Cam676: GRU • MultiWOZ: LSTM
5. MultiWOZ as a New Benchmark • Dialogue-Act-to-Text Generation •
Structured meaning representation (Dialogue Act?) • • Semantically Conditioned LSTM (Wen+, 2015) • SFX MultiWOZ restaurant • SER = (missing slots + redundant slots) / total slots Wen+, 2015
6. Conclusion • )1"&7* 8 E2E #$20
• Modular-based (+%' • MultiWOZ 3 46 • !-53. github /,