Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A...
Search
tosho
December 10, 2018
Research
0
340
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
tosho
December 10, 2018
Tweet
Share
More Decks by tosho
See All by tosho
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
tosho
0
310
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
tosho
0
360
Shaham and Levy, 2021. Neural Machine Translation without Embeddings. NAACL2021
tosho
0
120
Liu et al., 2021. Pay Attention to MLPs. arXiv
tosho
0
170
Huang et al. 2020 Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting
tosho
0
480
Ive, Madhyastha, Specia_2019_EMNLP_Deep Copycat Networks for Text-to-Text Generation
tosho
0
150
Tan, Bansal_2019_EMNLP_LXMERT Learning Cross-Modality Encoder Representations from Transformers
tosho
0
240
Tsai et al._2019_ACL_Multimodal Transformer for Unaligned Multimodal Language Sequences
tosho
0
400
Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL
tosho
3
300
Other Decks in Research
See All in Research
能動適応的実験計画
masakat0
2
1.1k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
330
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
970
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.4k
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Open Gateway 5GC利用への期待と不安
stellarcraft
2
160
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
110
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
240
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.3k
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Agile that works and the tools we love
rasmusluckow
331
21k
Code Reviewing Like a Champion
maltzj
527
40k
Facilitating Awesome Meetings
lara
57
6.7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Side Projects
sachag
455
43k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Transcript
MultiWOZ – A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modeling Tosho Hirasawa
0. Overview • -6<+?E$> • 4L3I/%) H2 • :@Multi-Domain
Wizard-of-Oz (MultiWOZ) • KJ • ("*72 GA/9F8 #!= 5 ,1 • 0.BD&* ' &(*;C
1. Introduction • Conversational Artificial Intelligence • human-level *)&($ •
#%' ! • Seneff and Polifroni, 2000 • "Raux et al., 2005 • Amazon AlexaRam et al., 2018
1. Introduction • \T@F [C0*%0# RA •
2DKU • =W:J • ?6) 8V • OXN3A • PH517 E2E ,"/LI • <];Z17MYB( >E • &!-0Q • " 9 • [C$+0_4D • GS5'.-0^
1. Introduction , , 2017
2. Related Works • >K&.(%3/9 ! • Machine-to-Machine • *5/4+"O6K"R
• HLJ-$) T DM6K\E ]X • Human-to-Machine • 7:=@^Y'(*0UZ9";I • G OE! :B • HLJ^Y'(*0 YS?,1$5&.(NI • Human-to-Human • G<QW &(+< • Twitter, Reddit, Ubuntu 6K"_8NI! • HLJ6KC[ AP#-*'25 FV
3. Data Collection Set-up • Wizard-of-Oz E4 • Dialogue Task:
• *,-@ ontology random sampling !'#%"8(6 • User Side: • (6=1 97CF.;A • System (Wizard) Side: • $ 2: 97/D • Wizard/User (6>, (6JG+ • (6)I30< • (6H5&?B)I30
3. Data Collection Set-up • Annotation of Dialogue Acts •
Dialogue Act = intent + slot-value pairs • intent: inform / request • slot-value: domain, price, … • Amazon Mechanical Turk +!" &$ dialogue acts .) • !" &$ '- /( • % ,*0.8843#0
4. MultiWOZ Dialogue Corpus •
: domain
4. MultiWOZ Dialogue Corpus : expensive : domain
4. MultiWOZ Dialogue Corpus • (turns in a
dialogue) • 8.93 (single-domain), 15.39 (multi-domain) • 115,434 turns • >70% 10 turns • (sentence length) • 11.75 (user), 15.12 (wizard)
4. MultiWOZ Dialogue Corpus • Dialogue Acts • 60% turns
action • %# • "$ • %# !"$
4. MultiWOZ Dialogue Corpus • •
• Multi-Domain, Dialogue Act
5. MultiWOZ as a New Benchmark • Dialogue modelling task
• Dialogue State Tracking • (,# '/ • &,.5-0)1 ontology • Dialogue-Context-to-Text Generation • (,Dialogue State, # '/ • &,!16 • Cam676/MultiWOZ 28 • % $"+* • RNN 473 • Cam676: GRU • MultiWOZ: LSTM
5. MultiWOZ as a New Benchmark • Dialogue-Act-to-Text Generation •
Structured meaning representation (Dialogue Act?) • • Semantically Conditioned LSTM (Wen+, 2015) • SFX MultiWOZ restaurant • SER = (missing slots + redundant slots) / total slots Wen+, 2015
6. Conclusion • )1"&7* 8 E2E #$20
• Modular-based (+%' • MultiWOZ 3 46 • !-53. github /,