Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A...
Search
tosho
December 10, 2018
Research
0
350
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
tosho
December 10, 2018
Tweet
Share
More Decks by tosho
See All by tosho
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
tosho
0
310
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
tosho
0
360
Shaham and Levy, 2021. Neural Machine Translation without Embeddings. NAACL2021
tosho
0
120
Liu et al., 2021. Pay Attention to MLPs. arXiv
tosho
0
170
Huang et al. 2020 Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting
tosho
0
480
Ive, Madhyastha, Specia_2019_EMNLP_Deep Copycat Networks for Text-to-Text Generation
tosho
0
150
Tan, Bansal_2019_EMNLP_LXMERT Learning Cross-Modality Encoder Representations from Transformers
tosho
0
240
Tsai et al._2019_ACL_Multimodal Transformer for Unaligned Multimodal Language Sequences
tosho
0
400
Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL
tosho
3
300
Other Decks in Research
See All in Research
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
360
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
290
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
440
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
音声感情認識技術の進展と展望
nagase
0
410
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
超高速データサイエンス
matsui_528
1
320
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
Designing for Timeless Needs
cassininazir
0
93
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
The Curse of the Amulet
leimatthew05
0
4.8k
Site-Speed That Sticks
csswizardry
13
1k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
250
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Paper Plane
katiecoart
PRO
0
44k
Skip the Path - Find Your Career Trail
mkilby
0
27
Transcript
MultiWOZ – A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modeling Tosho Hirasawa
0. Overview • -6<+?E$> • 4L3I/%) H2 • :@Multi-Domain
Wizard-of-Oz (MultiWOZ) • KJ • ("*72 GA/9F8 #!= 5 ,1 • 0.BD&* ' &(*;C
1. Introduction • Conversational Artificial Intelligence • human-level *)&($ •
#%' ! • Seneff and Polifroni, 2000 • "Raux et al., 2005 • Amazon AlexaRam et al., 2018
1. Introduction • \T@F [C0*%0# RA •
2DKU • =W:J • ?6) 8V • OXN3A • PH517 E2E ,"/LI • <];Z17MYB( >E • &!-0Q • " 9 • [C$+0_4D • GS5'.-0^
1. Introduction , , 2017
2. Related Works • >K&.(%3/9 ! • Machine-to-Machine • *5/4+"O6K"R
• HLJ-$) T DM6K\E ]X • Human-to-Machine • 7:=@^Y'(*0UZ9";I • G OE! :B • HLJ^Y'(*0 YS?,1$5&.(NI • Human-to-Human • G<QW &(+< • Twitter, Reddit, Ubuntu 6K"_8NI! • HLJ6KC[ AP#-*'25 FV
3. Data Collection Set-up • Wizard-of-Oz E4 • Dialogue Task:
• *,-@ ontology random sampling !'#%"8(6 • User Side: • (6=1 97CF.;A • System (Wizard) Side: • $ 2: 97/D • Wizard/User (6>, (6JG+ • (6)I30< • (6H5&?B)I30
3. Data Collection Set-up • Annotation of Dialogue Acts •
Dialogue Act = intent + slot-value pairs • intent: inform / request • slot-value: domain, price, … • Amazon Mechanical Turk +!" &$ dialogue acts .) • !" &$ '- /( • % ,*0.8843#0
4. MultiWOZ Dialogue Corpus •
: domain
4. MultiWOZ Dialogue Corpus : expensive : domain
4. MultiWOZ Dialogue Corpus • (turns in a
dialogue) • 8.93 (single-domain), 15.39 (multi-domain) • 115,434 turns • >70% 10 turns • (sentence length) • 11.75 (user), 15.12 (wizard)
4. MultiWOZ Dialogue Corpus • Dialogue Acts • 60% turns
action • %# • "$ • %# !"$
4. MultiWOZ Dialogue Corpus • •
• Multi-Domain, Dialogue Act
5. MultiWOZ as a New Benchmark • Dialogue modelling task
• Dialogue State Tracking • (,# '/ • &,.5-0)1 ontology • Dialogue-Context-to-Text Generation • (,Dialogue State, # '/ • &,!16 • Cam676/MultiWOZ 28 • % $"+* • RNN 473 • Cam676: GRU • MultiWOZ: LSTM
5. MultiWOZ as a New Benchmark • Dialogue-Act-to-Text Generation •
Structured meaning representation (Dialogue Act?) • • Semantically Conditioned LSTM (Wen+, 2015) • SFX MultiWOZ restaurant • SER = (missing slots + redundant slots) / total slots Wen+, 2015
6. Conclusion • )1"&7* 8 E2E #$20
• Modular-based (+%' • MultiWOZ 3 46 • !-53. github /,