Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A...
Search
tosho
December 10, 2018
Research
0
300
Budzianowski et al. - EMNLP 2018 - MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
tosho
December 10, 2018
Tweet
Share
More Decks by tosho
See All by tosho
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
tosho
0
260
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
tosho
0
310
Shaham and Levy, 2021. Neural Machine Translation without Embeddings. NAACL2021
tosho
0
81
Liu et al., 2021. Pay Attention to MLPs. arXiv
tosho
0
120
Huang et al. 2020 Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting
tosho
0
380
Ive, Madhyastha, Specia_2019_EMNLP_Deep Copycat Networks for Text-to-Text Generation
tosho
0
90
Tan, Bansal_2019_EMNLP_LXMERT Learning Cross-Modality Encoder Representations from Transformers
tosho
0
170
Tsai et al._2019_ACL_Multimodal Transformer for Unaligned Multimodal Language Sequences
tosho
0
280
Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL
tosho
3
220
Other Decks in Research
See All in Research
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
160
LLM時代の半導体・集積回路
kentaroy47
1
480
Practical The One Person Framework
asonas
1
1.5k
RCEへの近道
kawakatz
1
800
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
ミニ四駆AI用制御装置の事例紹介
aks3g
0
160
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.2k
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
180
LLM based AI Agents Overview -What, Why, How-
masatoto
2
600
SNLP2024:Planning Like Human: A Dual-process Framework for Dialogue Planning
yukizenimoto
1
310
説明可能AIの基礎と研究動向
yuyay
0
130
出生抑制策と少子化
morimasao16
0
430
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
4 Signs Your Business is Dying
shpigford
180
21k
Become a Pro
speakerdeck
PRO
24
5k
Rails Girls Zürich Keynote
gr2m
93
13k
Happy Clients
brianwarren
97
6.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
What's in a price? How to price your products and services
michaelherold
243
12k
Transcript
MultiWOZ – A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modeling Tosho Hirasawa
0. Overview • -6<+?E$> • 4L3I/%) H2 • :@Multi-Domain
Wizard-of-Oz (MultiWOZ) • KJ • ("*72 GA/9F8 #!= 5 ,1 • 0.BD&* ' &(*;C
1. Introduction • Conversational Artificial Intelligence • human-level *)&($ •
#%' ! • Seneff and Polifroni, 2000 • "Raux et al., 2005 • Amazon AlexaRam et al., 2018
1. Introduction • \T@F [C0*%0# RA •
2DKU • =W:J • ?6) 8V • OXN3A • PH517 E2E ,"/LI • <];Z17MYB( >E • &!-0Q • " 9 • [C$+0_4D • GS5'.-0^
1. Introduction , , 2017
2. Related Works • >K&.(%3/9 ! • Machine-to-Machine • *5/4+"O6K"R
• HLJ-$) T DM6K\E ]X • Human-to-Machine • 7:=@^Y'(*0UZ9";I • G OE! :B • HLJ^Y'(*0 YS?,1$5&.(NI • Human-to-Human • G<QW &(+< • Twitter, Reddit, Ubuntu 6K"_8NI! • HLJ6KC[ AP#-*'25 FV
3. Data Collection Set-up • Wizard-of-Oz E4 • Dialogue Task:
• *,-@ ontology random sampling !'#%"8(6 • User Side: • (6=1 97CF.;A • System (Wizard) Side: • $ 2: 97/D • Wizard/User (6>, (6JG+ • (6)I30< • (6H5&?B)I30
3. Data Collection Set-up • Annotation of Dialogue Acts •
Dialogue Act = intent + slot-value pairs • intent: inform / request • slot-value: domain, price, … • Amazon Mechanical Turk +!" &$ dialogue acts .) • !" &$ '- /( • % ,*0.8843#0
4. MultiWOZ Dialogue Corpus •
: domain
4. MultiWOZ Dialogue Corpus : expensive : domain
4. MultiWOZ Dialogue Corpus • (turns in a
dialogue) • 8.93 (single-domain), 15.39 (multi-domain) • 115,434 turns • >70% 10 turns • (sentence length) • 11.75 (user), 15.12 (wizard)
4. MultiWOZ Dialogue Corpus • Dialogue Acts • 60% turns
action • %# • "$ • %# !"$
4. MultiWOZ Dialogue Corpus • •
• Multi-Domain, Dialogue Act
5. MultiWOZ as a New Benchmark • Dialogue modelling task
• Dialogue State Tracking • (,# '/ • &,.5-0)1 ontology • Dialogue-Context-to-Text Generation • (,Dialogue State, # '/ • &,!16 • Cam676/MultiWOZ 28 • % $"+* • RNN 473 • Cam676: GRU • MultiWOZ: LSTM
5. MultiWOZ as a New Benchmark • Dialogue-Act-to-Text Generation •
Structured meaning representation (Dialogue Act?) • • Semantically Conditioned LSTM (Wen+, 2015) • SFX MultiWOZ restaurant • SER = (missing slots + redundant slots) / total slots Wen+, 2015
6. Conclusion • )1"&7* 8 E2E #$20
• Modular-based (+%' • MultiWOZ 3 46 • !-53. github /,